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Within the framework of adaptive dynamics we consider the evolution by natural 
selection of reproductive strategies in which individuals may adjust their reproductive 
behaviour in response to changing environmental conditions. As a specific example 
we considered a discrete-time model in which possible fluctuations in the environ-
mental conditions are caused by predator–prey interaction. Our main findings include: 
(1) Coexistence between two fixed strategies (i.e., strategies that do not adjust to 
changing environmental conditions) is impossible; there exists a best fixed strategy, 
which invades and ousts all other fixed strategies. (2) A necessary condition for con-
ditional (adjustable) strategies to evolve is that there are fluctuations in the environ-
mental conditions. Predator–prey interactions may cause such fluctuations and under 
natural assumptions there exists an optimal conditional strategy which is uninvadable 
and invades and ousts all other strategies.

#An earlier version of this article was completed while Ilkka Hanski was still alive. The co-authors dedicate the paper to the 
memory of Ilkka — a friend and collaborator for almost 30 years.

Introduction

Adaptive dynamics is a framework within which 
it is possible to explicitly link evolution by 
natural selection to population dynamics. This 
is an extremely important aspect of evolutionary 
theory because population dynamics is shaped 
by interactions through the environment and the 
fitness of an individual depends on the environ-
ment it experiences. At an ecological equilib-
rium the environmental conditions remain con-
stant and much of the early work of adaptive 
dynamics has dealt with questions such as inva-
sion, trait substitution and branching under such 
steady environmental conditions.

In nature the environmental conditions never 
remain constant. It is well known that very 
simple ecological models may lead to cyclic or 
even chaotic behaviour and even if a particular 
model would predict convergence to a steady 
state, the true system would still show fluc-
tuations in the environmental conditions due 
to “noise”, that is, interactions that have been 
neglected in the model. It is therefore impera-
tive to consider adaptive dynamics in the case 
of variable environmental conditions (Kisdi & 
Meszéna 1993, Ripa & Dieckmann 2013).

When the environmental conditions are 
allowed to fluctuate a new aspect enters the 
scene of adaptive dynamics: individuals may 
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adjust their behaviour in response to the chang-
ing conditions. The traits or strategies cannot 
then any longer be expressed by finite dimen-
sional quantities, but should be functions of the 
environmental conditions. Adaptive dynamics 
of function-valued traits have been discussed, 
among others, by Parvinen et al. (2006, 2013), 
Dieckmann et al. (2006) and by Metz et al. 
(2016). In this paper, we give a treatment of 
adaptive dynamics of such conditional strategies 
in the context of a class of simple ecological 
models in discrete time.

The setting

The basic unit of a population is the individual. 
When modelling the dynamics of populations 
the first task is to describe the development, 
survival and reproductive behaviour of individu-
als. The individual behaviour depends on the 
environmental conditions that usually vary with 
time. One should not in the first hand think of 
the environmental conditions an individual per-
ceives as exogenous conditions such as season-
ally varying temperature, but rather as quantities 
summarizing the effect upon the behaviour of 
the individual of all individuals (both conspe-
cific and others) it is interacting with. In fact, 
all interactions should be modelled through the 
environmental conditions, which we therefore 
also call (environmental) interaction variables 
(Diekmann et al. 2001, 2003). We collect all 
the interaction variables into a vector, which we 
denote by I.

In nature there are interactions of many dif-
ferent types. Individuals may cooperate or they 
may compete for common resources such as food 
or territory. The interaction variables should then 
reflect quantities like food density or the avail-
ability of territory. In predator–prey interactions 
the prey density should be an interaction variable 
for the predators (indeed, that is their food!), 
whereas predation pressure (which is a function 
of predator density) should be included among 
the interaction variables for the prey. In general, 
the interaction variables are functions of the den-
sities of the interacting populations.

Let us recapitulate the basic modelling setup: 
The environmental interaction variable I deter-

mines individual behaviour, whereas the indi-
viduals contribute to the environment (e.g. by 
consuming food). This leads to a feedback loop.

Mathematically the modelling using interac-
tion variables means that if we cut the feedback 
loop and assume I to be a given function of time, 
then the resulting model is linear (but time-
dependent). The biological interpretation of this 
thought experiment is that individuals do not 
interact at all but are independent of each other. 
Closing the feedback loop one obtains a nonlin-
ear autonomous problem, the solution of which 
we seek.

In this paper, we shall for expository reasons 
consider a very simple situation. We consider an 
unstructured semelparous population in discrete 
time. The time instants n = 0, 1, 2, … are the 
instants at which reproduction (and death of the 
parent) takes place. According to the general 
modelling principles outlined above, the model 
takes the following form:

 xn+1 = xnRx(In). (1)

Here xn denotes the population density at the the 
beginning of the nth season (immediately after 
reproduction). Rx(I ) is the per-capita recruit-
ment, that is, the expected number of offspring 
produced by an individual, given the value I of 
the environmental condition. We shall refer to 
this population as the resident population.

We are interested in the possible success 
of a mutant y using a different strategy, that is, 
having a different per-capita recruitment Ry(I ). 
We, therefore, couple Eq. 1 with the equation

 yn+1 = ynRy(In). (2)

The Eqs. 1 and 2 describe competition 
between the two types x and y. We emphasize 
once more that all interactions happen through I: 
the y variable does not appear in the x equation 
and neither does x appear in the y equation. For 
most of our arguments the precise form of the 
feedback function, that is, the function prescrib-
ing how I depends on x, y and possibly other 
interacting populations, is irrelevant.

We shall now simplify matters further and 
assume that the interaction variable I is a scalar. 
This means that we assume that everything that 
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is population dynamically relevant about the 
environment can be summarized in a single real 
number. We choose I non-negative such that 
I = 0 corresponds to a population-free, or virgin, 
environment and such that an increase in any of 
the interacting populations leads to an increase 
in I.

To model the unavoidable detrimental effects 
of crowding upon birth and the decreased sur-
vival due to crowding and/or the activity of 
other interacting populations (e.g. predators), we 
assume that greater I entails lower recruitment. 
In the monomorphic case one can then always 
(after a suitable rescaling of I ) write the per-
capita recruitment as

 R(I ) = βexp(−kI ). (3)

If one in the monomorphic case takes I = x, 
Eqs. 1 and 3 reduce to the well-known model 
first introduced by Ricker (1954). It should be 
stressed that Eq. 3 is not merely the result of a 
mathematical transformation: mechanistic deri-
vations of Eq. 3 in the single-species case can be 
found for instance in the book by Thieme (2003).

In the polymorphic case a transformation of 
the per-capita recruitment to the form in Eq. 3 
that would hold for the different types simulta-
neously is of course not possible in general. We 
now make the assumption that the per-capita 
recruitment is of the form in Eq. 3, with type 
specific parameters k and β, when there are more 
that one type present. In the Appendix we derive 
a concrete predator–prey model, in which the 
parameters k and β are given clearcut biologi-
cal interpretations. Here we are content with the 
following qualitative description: The parameter 
k in Eq. 3 measures the strength of the density-
dependence or the competitive ability and β can 
be interpreted as the average clutch size at low 
density, when there is no negative effect of den-
sity on reproduction. (We use the term ’clutch’ as 
a shorthand for a ‘batch of offspring born at the 
same time’, with no intention of restricting the 
results to species for which ‘clutch’ is generally 
used in the biological literature.)

We assume that the parameters k and β are 
subject to selection and evolvable.

Finally we assume a trade-off between repro-
ductive effort and competitive ability by making 

k a function of β. We assume that individuals 
producing small clutches do better in competi-
tion than individuals producing large clutches. 
This assumption has substantial empirical sup-
port for many organisms (Stearns 1992), and 
requires k to be an increasing function of β. If 
the population densities are low the trade-off is 
usually less pronounced than if the densities are 
high. One should therefore allow k to depend 
explicitly on the environment I. A convenient 
assumption that covers quite a number of poten-
tial forms of the trade-off, at least qualitatively, 
is that k is a product of a function depending 
only on I and a function depending only on β:

 k = k(I, β) = k1(I )k2(β). (4)

From what has been said above it follows 
that k1 should be nondecreasing and k2 increas-
ing. Inserting Eq. 4 into Eq. 3 of the per-capita 
recruitment one obtains

 R(I ) = βexp(−k2(β )k1(I )I ). (5)

If we now redefine the environment as k1(I)I, 
we see that we can assume that the function k = k2 
depends on β only. We shall follow this conven-
tion throughout the paper.

Individual reproductive choices may be 
affected by the current environment. Breeding 
females of many animals are capable of respond-
ing to changing environmental conditions by for 
instance reducing clutch size, resorbing embryos 
and possibly by selectively lactating only some 
of their offspring. We shall distinguish between 
fixed and conditional reproductive strategies. 
A fixed reproductive strategy is modelled by 
assuming that an individual at each reproductive 
event produces on average a fixed number β of 
young. In a conditional strategy the clutch size 
β depends on the environmental interaction vari-
able I. In the latter case the per-capita recruit-
ment has the form

 R(I ) = β(I )exp(−k(β(I ))I ). (6)

If the population dynamics is such that the 
system settles down to a steady state, then the 
interaction variable will be constant. It is self-
evident that under such steady environmental 
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conditions there cannot be any advantage of con-
ditional strategies, simply because under steady 
conditions they cannot be distinguished from 
fixed ones. We shall therefore assume an under-
lying ecological model, which leads to fluctuat-
ing populations and hence changing varying 
environmental conditions. The most obvious 
ecological interaction leading to fluctuations is 
predator–prey interaction. The numerical exam-
ples given in this paper are based on a preda-
tor–prey model originally derived by Gyllenberg 
et al. (1996) and for completeness reproduced in 
the Appendix. The details of the model are irrele-
vant for the results presented in this paper. As all 
biologically relevant models, this model predicts 
that population sizes remain bounded — a fact 
that will be used frequently in the mathematical 
elaborations.

Invasion

We consider competition between different 
reproductive strategies. Two fundamental ques-
tions are of course those of invadability and 
outcompetition of a resident type by a mutant 
following a different strategy.

Assume that the dynamics of a resident type 
x with per-capita recruitment Rx(I ) has settled 
down to an attractor. We shall refer to the cor-
responding sequence of environments as ( , 

, ...). Consistency then requires that

 . (7)

Assume now that a mutant type y with per-
capita recruitment Ry(I ) enters the population. To 
begin with it will appear in very small numbers 
and it will therefore not perturb the resident 
population density from the attractor very much. 
The environment experienced by the mutant 
will therefore be given by the sequence ( , 

, ...). Invasion will be successful if and only 
if the logarithm of the per-capita recruitment of 
the mutant is positive on average, that is, if and 
only if

 . (8)

With the choice (Eq. 6) of the per-capita 

recruitment the criterion (Eq. 8) takes on the 
form

. (9)

If the resident attractor is very complicated it 
is of course in general hard to determine whether 
the condition in Eq. 9 is valid or not. But if the 
mutant y adopts a fixed strategy the parameter βy 
is a constant and the invasion criterion reduces to

 , (10)

where  denotes the average of the environ-
mental interaction variable calculated over the 
resident attractor. This result gains in interest 
when we realize that the left hand side of Eq. 10 
is the value  of the environmental interaction 
variable when the mutant is at a fixed point. We 
can thus rewrite Eq. 10 as

  > , (11)

and state the result as follows: A mutant adopting 
a fixed strategy can invade if and only if the the 
value of the environmental interaction variable 
corresponding to a fixed point of the mutant is 
greater than the average value of the environ-
ment calculated over the resident attractor. This 
result holds regardless of whether the resident 
adopts a fixed or a conditional strategy.

Fixed reproductive strategies

If both the resident and the mutant adopt fixed 
strategies the analysis can be considerably 
refined. Dividing Eq. 2 by Eq. 1 one obtains

  (12)

from which it follows that

 . (13)

If

  (14)

then  > 1 and hence  



ANN. ZOOL. FENNICI  Vol. 54  •  Reproductive strategies under variable environmental conditions	 197

tends to infinity as n tends to infinity indepen-
dently of the initial state. Since all orbits are 
bounded, this is possible only if xn tends to zero. 
We thus conclude that in the case of fixed repro-
ductive strategies the mutant invades and out-
competes the resident if and only if the mutant in 
the absence of the resident gives rise to a higher 
value of the environmental interaction variable 
at the fixed point than the resident.

We emphasize that this result is independent 
of the actual dynamics. Even in the case of cha-
otic dynamics it is the fixed point value of I that 
determines whether invasion and outcompetition 
takes place.

The result has an interesting corollary. 
Assume that Eq. 14 does not hold. Then because 
of the interchangeability of the mutant and the 
resident (both adopt fixed strategies!), the resi-
dent will outcompete the mutant, which means 
that the mutant could never have invaded. Thus 
invasion is actually equivalent with the seem-
ingly stronger condition of invasion and outcom-
petition. It follows that

  = , (15)

in other words: The average value of the envi-
ronmental interaction variable corresponding to 
a type adopting a fixed reproductive strategy 
equals the value of the environmental interaction 
variable at the fixed point.

It is funny to see how easily this result was 
achieved when density dependence and interac-
tion is modelled using the environment variable 
I. We have not been able to prove it directly from 
the difference equation.

Even if the resident attractor contains infi-
nitely many points the sign of the dominant Lya-
punov exponent

 log βy − k(βy)  (16)

is determined by the scalar property  of the 
attractor. Adopting the terminology of Meszéna 
and Metz (1999), the effective dimension of the 
environmental feedback therefore equals one. 
According to the general principle of competi-
tive exclusion put forward by Géza Meszéna 
and collaborators (Meszéna & Metz 1999, Diek-
mann et al. 2003, Gyllenberg and Meszéna 2005, 

Meszéna et al. 2006, Barabas et al. 2012) the 
number of types that can robustly coexist is 
lower than or equal to the effective dimension of 
the environmental feedback. In the one dimen-
sional case coexistence is therefore not possible. 
This is in concordance with our result above.

Our models have the special feature that 
the environment I is a one-dimensional vari-
able. Moreover, in the case of fixed strategies 
the basic reproduction numbers of the types are 
decreasing functions of I. Diekmann and Mylius 
(1995) (see also Metz et al. 2008, Gyllenberg et 
al. 2011) showed that it follows from this that if 
population dynamics leads to a steady state with 
constant I, then a type x is evolutionarily stable if 
and only if the function which assigns to a type 
the environmental value at which the population 
will be steady has a maximum at x. The results 
above show that for our model of fixed strategies 
the same is true even if stabilization of popula-
tion dynamics does not occur.

Fisher (1930) and Charlesworth (1980) 
noted that selection maximizes mean popula-
tion size under certain conditions in single-
species models. This principle is violated for 
many multi-species systems including preda-
tor–prey systems (Levins 1975, Roughgarden 
1976, León and Charlesworth 1978). In our 
model of fixed reproductive strategies selection 
maximizes the mean value  of the environ-
mental interaction variable I. For the particular 
predator–prey model of the Appendix,  = 
log βx /k(βx) is the mean prey population size in 
the absence of predation (and in the absence 
of the mutant). But maximizing this quantity is 
not the same as maximizing mean population 
size. This is illustrated in Fig. 1 in which panel a 
depicts  = log βx /k(βx) as a function of β for a 
particular choice of the trade-off k(β), and panel 
b shows the mean prey population size obtained 
from the predator–prey model. The curve in b 
attains its maximum for a smaller value of β than 
the curve in a and therefore the maximum mean 
prey population size is not selected for.

Conditional reproductive 
strategies

As shown in the previous section, coexistence 
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between two fixed strategies is not possible 
since the type with larger Iave will always out-
compete the other type. On the other hand, two 
conditional strategies may very well coexist. As 
a matter of fact, even a fixed and a conditional 
strategy may invade each other and thus coexist. 
This is demonstrated by the following example.

Example

Let k(β) = β. Since log β/β assumes its maximum 
at β = e, the best fixed strategy is to produce on 
average β = e offspring. The average value of 
the environment corresponding to the best fixed 
strategy is 1/e. Assume that a conditional strat-
egy is given by

 , (17)

In the following, we choose M = 3.8 and d = 
2.25. Again we take the predator–prey model of 

the Appendix as the underlying ecological model. 
For the parameters describing predator behaviour 
we choose a = 120, F = 0.15 and m = 1.

We first consider the case in which the resi-
dent adopts the best fixed strategy. Simulations 
show that the attractor lies on an invariant curve 
in the (x, I )-plane and that the dynamics on this 
curve are complicated (quasiperiodic or chaotic). 
Mathematically inclined readers will realize that 
the nontrivial fixed point has lost its stability 
through a Hopf bifurcation. Furthermore

  (18)

showing that the conditional strategy can invade 
the best fixed strategy provided predators exist in 
the population. Assume now that the resident fol-
lows the conditional strategy. The attractor looks 
very similar to the one corresponding to the best 
fixed strategy, but the amplitude is consider-
ably smaller. This is due to the general stabiliz-
ing effect of conditional strategies (Gyllenberg 
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Fig. 1. Mean population size for the prey in (a) the absence of predation for the parameter values amF = 21.0, F = 
0.4, k(β) = βp and p = 0.7; and (b) the presence of predation for the same parameter values. The selected fixed 
strategy marked with a vertical line has clutch size β = 4.1727 in both cases. 
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et al. 1996). Can a mutant adopting the best 
fixed strategy invade? The average value of the 
resident environment was found to be  ≈ 0.35 
which is less than  = 1/e and so the best fixed 
strategy can indeed invade. Figure 2 shows the 
resident attractor for the cases in which the 
resident adopts either the fixed or the conditional 
strategy and the projection of the attractor onto 
the (x, y)-coordinate plane in the case of coexist-
ence, between the best fixed strategy x and the 
conditional strategy. The three-dimensional situ-
ation is depicted in Fig. 3.

In order to compare the amplitudes of the dif-
ferent oscillations we plotted the resident attrac-
tor of the fixed strategy, the resident attractor 
of the conditional strategy, and the slanted pro-
jection of the coexistence attractor in the same 
log-scaled plane (Fig. 4). It is now clearly visible 
that the amplitude of the coexistence attractor 
is strictly located between the amplitudes of the 
fixed and the conditional attractor, respectively.

An optimization principle

It is intuitively clear that a type, which under 
all environmental conditions has a greater per-
capita recruitment than its competitors, has an 
advantage. We already saw an example of this in 
the section ‘Fixed reproductive strategies’ in the 
case of competition between two fixed strategies.

The best an individual can achieve is to 
maximize its contribution to the next generation. 
With a per-capita recruitment given by Eq. 3 and 
trade-off given by k this amounts to having a per-
capita recruitment equal to

 , (19)

where M(I ) is the maximum clutch size when 
the environment is I. For physiological reasons 
individuals cannot produce an arbitrarily large 
number of offspring and therefore M(I ) < ∞ for 
all I.

Next we show that under natural assumptions 
such an optimal reproductive strategy exists 
indeed. We assume that

H1	 Function M : [0, ∞) → (0, ∞) is continuous.
H2	 Function k : [0, ∞) → [0, ∞) is increasing 
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Fig. 2. The resident attractor when (a) the prey adopts 
the best fixed strategy, and (b) the prey adopts the 
conditional strategy given by Eq. 17. (c) The projection 
onto the xy-coordinate plane of (the attractor describing 
coexistence between the best fixed strategy and the 
conditional strategy. Parameter values: M = 3.8, d = 
2.25, a = 120, F = 0.15 and m = 1.

and positive for β > 0,
H3	 Function k is twice continuously differenti-

able and  > 0 for all β  
(0, ∞).
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is marked with red dots. The resident attractor when 
the prey adopts the conditional strategy given by Eq. 
17 is marked with blue dots. The coexistence attractor 
and its projection onto the xy-plane is denoted by black 
dots and green dots, respectively (cf. Fig. 2). Slanted 
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by the arrow. The coexistence attractor seems to have 
strictly smaller amplitude than the resident attractor for 
the fixed strategy in red whereas it has strictly larger 
amplitude than the resident attractor for the conditional 
strategy in blue. Parameter values: M = 3.8, d = 2.25, 
a = 120, F = 0.15 and m = 1. The fixed strategy equilib-
rium without predators (1/e,0,0) that cannot be invaded 
by the conditional strategy is denoted by a green star.
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slated projections of the coexistence attractor is strictly 
between those two strategies (magenta dots). Param-
eter values: M = 3.8, d = 2.25, a = 120, F = 0.15 and 
m = 1.

As already pointed out, assumption H2 
reflects that individuals producing smaller 
clutches do better in competition than individu-
als producing larger clutches. Assumption H3 is 
more technical in nature, but it ensures the exist-
ence of a unique optimal reproductive strategy. 
For instance the power function k(β) = βp satis-
fies H2 and H3 for all p > 0.

Theorem: Assume H1–H3.

i.	 The supremum in Eq. 19 is a maximum, and 
for every I  [0, ∞) it is attained at precisely 
one β  (0, M(I )].

ii.	 The unique β =: (I ) found in (i) defines a 
continuous function  : [0, ∞) → [0, ∞).

iii.	There exists an ε > 0 such that (I ) = M(I ), 
I  [0, ε).

Proof: For every I  [0, ∞) the continuous func-
tion

 ψI(β) : = βexp(−k(β)I )

attains its maximum in the compact interval 
[0, M(I )]. As ψI is positive and ψI(0) = 0 the 
maximum is in fact attained in (0, M(I )]. If it is 
attained at β  (0, M(I )), then

. (20)

Equation 20 holds if and only if

 . (21)

It follows from H3 that χ is strictly decreas-
ing and continuous on (0, ∞) and hence equation 
(21) can have at most one solution in (0, M(I )). 
This proves i.

The above construction immediately shows 
that

 .

Hence  is continuous.
Finally, since χ(M(0)) > 0 it follows by con-

tinuity that I < χ(M(I )) for all sufficiently small 
values of I. This proves iii.

Remark: Since increasing I amounts to 
increasing intraspecific competition (and/or 
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increasing predator density in the case of the 
model in the Appendix) one expects the maxi-
mum clutch size M to be a deceasing function of 
I. As the proof of the theorem shows the optimal 
clutch size  is then a decreasing function of I. 
By conclusion iii the optimal strategy is to pro-
duce the maximal possible number of offspring 
when I is small, that is, when density dependent 
effects are not pronounced. But as I increases it 
pays to suppress reproduction, that is, to produce 
less offspring than is physiologically possible.

Next we consider invadability and outcom-
petition when one of the competing types adopts 
the optimal reproductive strategy.

First of all, it is rather obvious that the 
optimal strategy is uninvadable. To see this, let 
the resident x adopt the optimal strategy. Then 
(using Eq. 7)

, (22)

since by optimality  Ry( )/Rx( ) ≤ 1 for all i.
Let us now assume that the mutant adopts the 

optimal strategy. Arguing precisely as in Eq. 22, 
we see that

 . (23)

But will the optimal strategy actually invade? 
As a matter of fact it need not. To see why, 
assume that the resident is in a fixed point. The 
environment set by the resident is then a con-
stant Ires. Assume further that βx(I

res) = (Ires). 
This does not mean that the resident also adopts 
the optimal strategy, only that for this particular 
value of the environment its clutch size coin-
cides with that of the optimal strategy. It follows 
that in this case

 , (24)

and invasion does not take place. The result 
is easy to understand in intuitive terms: If the 
environment does not fluctuate, nothing can be 
gained from a potential ability to adjust as a 
response to environmental changes.

Assume now that the mutant y adopting the 
optimal strategy has invaded. Will it oust the 
resident? To answer this question we have to 
consider the actual population dynamics. Opti-

mality implies that

  for all i = 1, 2, …. (25)

The condition in Eq. 25 means that at each 
generation the mutant y gains ground at the 
expense of the resident x. It implies that

  n = 1, 2, …, (26)

and hence that the fraction yn/xn either tends 
to infinity or to a positive constant C. Since 
all orbits remain bounded the resident will go 
extinct in the former case. In the latter case there 
will be coexistence.

Let us have a closer look at the case

 . 

The ω-limit set (the set on which the asymptotic 
dynamics occur) then lies on the straight line

 y = Cx, (27)

and when the system is in the ω-limit set the 
equation

 Rx(I ) = Ry(I ) (28)

holds. Adding Eqs. 1 and 2 and taking Eq. 28 
into account one finds that

 (x + y)n + 1 = (x + y)nRx(In). (29)

This shows that in the ω-limit set the total popu-
lation x + y has precisely the same dynamics as 
the resident in the absence of the mutant. Let A 
be the (projection onto the x-axis of the) resident 
attractor. It follows from Eqs. 27 and 29 that in 
the case of coexistence between mutant and resi-
dent, the ω-limit set must be a subset of

 

for some C > 0.
So far our discussion has been independ-

ent of the strategy of the resident and of the 
underlying population dynamical model. If the 
per-capita recruitment Rx(I ) corresponding to 
the resident strategy is convex and satisfies some 
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other natural assumptions, Eq. 28 has precisely 
one solution I*. This is the case for instance if 
the resident adopts a fixed strategy (Gyllenberg 
et al. 1996). The equation (29) then holds in 
the ω-limit set with In = I* for all n. But since 
Eq. 29 is equivalent to the equation describing 
the residence attractor we conclude that Rx(I*) = 
Ry(I*) = 1, which means that the ω-limit set con-
sists of a fixed point.

Predator–prey interaction results typically in 
either fixed point dynamics or quasi-periodic 
dynamics after a Hopf bifurcation has occurred. 
We refer to (Gyllenberg et al. 1996) for a detailed 
description of the bifurcations in the case of 
fixed strategies. When predator-prey oscillations 
prevail, the fixed point has lost its stability and 
hence cannot be in the ω-limit set. As a conse-
quence the mutant adopting the optimal strategy 
will oust the resident.

We summarize our findings as follows: The 
optimal strategy is uninvadable. If the resident 
attractor describes predator–prey oscillations, 
then the optimal strategy will invade and oust a 
nonoptimal resident.

Discussion

We have considered the evolution of reproduc-
tive strategies under varying environmental 
conditions. The fluctuations in the environment 
are due to the population dynamics. A typical 
example of ecological interactions leading to 
such fluctuations is predator–prey interaction. A 
predator–prey model in discrete time has served 
as a concrete example to illustrate the theoretical 
results.

These density dependent effects were incor-
porated in the model by introducing an envi-
ronmental interaction variable which increases 
both with increasing prey density and increasing 
predator density. The fact that the environmental 
variable is one dimensional was crucial for many 
of our results. On the other hand, the precise 
functional forms of the environmental variable 
and the type of ecological interaction were in 
most cases irrelevant.

If the environment is given as a function 
of time, then the equation for the dynamics of 
the prey is linear (but time dependent). Model-

ling the nonlinear interaction (both inter- and 
intraspecies interaction) through feedback to the 
environment is extremely helpful. Many results 
that we have not been able to prove directly from 
the difference equations were now obtained rela-
tively easily.

In the context of our model coexistence 
between two fixed reproductive strategies is 
impossible. There exists a best fixed strategy, 
which invades and ousts all other fixed strate-
gies. The criterion of being best is independent 
of the actual population dynamics.

On the other hand, in the case of conditional 
reproductive strategies, invadability and outcom-
petition depends heavily on the dynamics. If 
the system is in a steady state there is obviously 
nothing to be gained by the ability to adjust the 
behaviour in response to changes in the environ-
ment since such changes will not occur. A neces-
sary condition for such conditional strategies to 
evolve is therefore that there are fluctuations in 
the environmental interaction variable. Predator-
prey interactions may cause such fluctuations 
and indeed we showed that with natural assump-
tions there exists an optimal conditional strategy 
which is uninvadable and invades and ousts all 
other strategies.
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Appendix

Predator–prey model

We derive a discrete predator-prey model, which is a variant of the Nicholson-Bailey model with 
density-dependent prey dynamics and a long-lived predator. The prey individuals live for at most one 
season and those who escape predation reproduce at the end of the season and then die. Predators do 
not die during the season, but at the end of the season a fraction F survive and reproduce.

The prey appear in two competing types the densities of which are denoted by x and y. The preda-
tor density is z.

Predators attack type x prey with a rate αx and type y prey with a rate αy. We assume that

 αx = αγx, and αy = αγy. (30)

where α is a property of the predator (its general predation activity), whereas the type specific 
parameter γ measures the vulnerability of the prey to predation. Assuming a linear (Holling type I) 
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functional response we arrive at the following system of ordinary differential equations describing the 
dynamics during the season:

  = −αγxxz, and  = −αγyyz. (31)

The solution to Eq. 31 is given by x(t) = exp(−αγxz0t)x0, y(t) = exp(−αγyz0t)y0, 0 ≤ t ≤ T, where x0, y0 
and z0 are the initial densities of prey and predators, and T is the length of the season.

We introduce the new parameter a = αT. The number of prey eaten during the season is given by 
(1 − exp(−γxaz0))x0 + (1 − exp(−γy az0))y0, and of these F((1 − exp(−γxaz0))x0 + (1 − exp(−γyaz0))y0) 
have been digested by predators that survive from the foraging season to reproduction. We assume 
that a fraction m of this prey mass is transformed into new predators at the end of the season.

Finally we assume that the recruitment of prey follows the Ricker model, that is, the prey indi-
viduals which survived predation produce βexp(−k(x + y)) offspring on average, again with k and β 
type specific.

To simplify the model we take γx = kx, and γy = ky and arrive at the following discrete model

 xn+1 = xnβxexp(−kx(xn + yn + azn)), (32)
 yn+1 = ynβyexp(−ky(xn + yn + azn)), (33)
 zn+1 = mF((1 − exp(−kxazn))xn + (1 − exp(−kyazn))yn) + Fzn. (34)

Observe that Eqs. 32 and 33 are of types as Eqs. 1 and 2 with per-capita recruitment of Ricker type 
as Eq. 3 and environmental interaction variable I = x + y + az.

The term az can be interpreted as the predation pressure each prey individual is subject to.
Remark: A perhaps more realistic model for the within season dynamics would allow predators to 

die during the season. In that case the predator density z in Eq. 31 would not be constant but the solu-
tion a differential equation, say

  = −δz. (35)

Equation 31 augmented by Eq. 35 can still be solved in closed form, but the difference is that then 
the amount

 

of prey consumed during the season could not be evaluated using elementary functions but would 
involve the exponential integral Ei. The resulting discrete dynamical system could of course still be 
treated numerically and the results would be qualitatively the same as for the simpler model that we 
chose.


