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Marine ecologists have been slow at adopting the metapopulation paradigm in their 
research. As explained in the landmark book Marine Metapopulations, marine ecol-
ogy was focused on local processes and used mainly experimental approaches that 
neglected the potential role of demographic connections among local populations, but 
this is no longer the case. Metapopulation theory is now integrated into marine ecology 
research and is being used as a helpful framework for describing spatial population 
processes, for asking new research questions, and for planning the management and 
conservation of marine species. Nevertheless, the use of the metapopulation paradigm 
in marine sciences is challenging because of the complex life histories of marine spe-
cies and the peculiarities of the marine environment. Here, I highlight the many chal-
lenges faced by ecologists who study marine metapopulations and mention some of the 
approaches that can be used to overcome them. In particular, I focus on the problem 
of estimating connectivity, an important attribute of metapopulations that represents 
a fundamental knowledge gap in marine ecology. Following the repeated calls for 
integrative approaches that combine all sources of information I propose the use of the 
hierarchical Bayesian framework and provide an example that considers the joint anal-
ysis of the three leading approaches in connectivity research, genetics, microchemistry 
and biophysical modelling.

Introduction

Many, if not most, of the countless and impor-
tant contributions of Ilkka Hanski to the field of 
population biology where based on his in-depth 
study of the Glanville fritillary (Melitaea cinxia) 
metapopulation network in the Åland Islands. 
As he explains in his insightful Metapopulation 
Ecology book (Hanski 1999), this is an ideal 
model system for conducting ecological research 
across large geographic areas. It has several 
practical advantages, which include the butter-

fly’s life cycle and spatial structure of the habitat 
where it is found. The suitable habitat occurs in 
discrete patches, which simplifies the delimita-
tion of local populations, and their limited size 
and the gregarious larval habits of M. cinxia 
greatly facilitate the census of local popula-
tions. Although sporadic long-distance dispersal 
may occur, most of the dispersal events involve 
nearby local populations. This and the geography 
of the Åland Islands lead to a hierarchical popu-
lation structure that enables the study of ecologi-
cal processes at a wide range of spatial scales. 

Ilkka Hanski: The legacy of a multifaceted ecologist



98	 Gaggiotti  •  ANN. ZOOL. FENNICI  Vol. 54

Finally, there is a more prosaic but nevertheless 
important feature; the dense network of small 
roads that connect the many scattered farm-
houses on the Åland Islands, which facilitate 
access to local populations of M. cinxia. Having 
said all of this, it is still true that planning and 
carrying out ecological research at the scale of 
the Glanville fritillary project is extremely chal-
lenging and requires an inquisitive mind, great 
determination and careful organisation; all attrib-
utes that Ilkka possessed in great abundance. It 
also requires the participation of a large number 
of devoted and hard-working students and young 
researchers. But this did not represent a problem 
to Ilkka because of his eagerness to foster the 
career of young scientists.

Although Ilkka focused his research on ter-
restrial metapopulations, the influence of his 
work extended to the marine sciences. Here, 
however, we are in a completely different realm 
with metapopulations of marine species repre-
senting a counterpoint to the Glanville fritillary 
metapopulations. Indeed, most marine species 
spend part of their life in the plankton at the 
mercy of strong oceanic currents and were ini-
tially seen as living in demographically open 
populations (Caley et al. 1996). On the other 
hand, butterflies were initially seen as living 
in closed populations because of their limited 
dispersal abilities and the patchy distribution 
of their host plants (Ehrlich et al. 1975). In 
both cases, however, the truth lies somewhere 
between these two extremes (cf. Hanski 1999, 
Hellberg 2009). Nevertheless, the differences 
between marine and terrestrial metapopulations 
are substantial and in some cases, extreme; com-
pare for example insects with mobile adults but 
immobile larval stages and benthic species with 
fixed adults but free ranging planktonic larvae. 
The larval stages of many marine taxa can spend 
more than a month in the water column at 
the mercy of ocean currents so their potential 
for dispersal is enormous. Moreover, the strong 
asymmetric flows and dynamics of the marine 
environment and their temporal variability can 
lead to very large variance in reproductive suc-
cess with most larvae being lost and only few 
individuals contributing recruits to local popu-
lations [reviewed by Hedgecock and Pudovkin 
(2011)]. Additionally, local population sizes of 

most marine species with larval dispersal are 
several orders of magnitude larger than that of 
most terrestrial species and they are logistically 
difficult to sample because of the peculiarities 
of the marine environment (Riginos et al. 2016). 
All these features make direct observation and 
study of individuals and local populations very 
difficult. Instead, marine biologists rely heavily 
on both remotely and locally deployed instru-
ments with their own measurement errors.

In this article, I will describe the main obsta-
cles faced by the study of marine metapopula-
tions and explain how they may be overcome by 
combining tools and data from different research 
fields using truly integrative statistical frame-
works. I will focus attention on the study of 
spatial structure of metapopulations, which is 
driven to a large extent by connectivity patterns, 
a metapopulation attribute that pervades Ilkka’s 
research. Note, however, that the purpose is not 
to review the marine connectivity literature but 
rather to highlight the great potential of integra-
tive Bayesian approaches as tools to study meta-
population processes in marine species.

What’s so special about marine 
metapopulations?

It is clear that few if any marine metapopula-
tion can play the important role of ecological 
model system or, as Ilkka put it, “ecological field 
facility” (Hanski 1999) played by the Glain-
ville fritillary metapopulation. However, they 
still need to be studied in detail to answer a 
number of important questions in population 
biology. These questions are wide-ranging, from 
the basic description of metapopulation structure 
and dynamics to the more complex question of 
how local adaptation and speciation can take 
place despite the potential for very long-distance 
dispersal.

As stated before, marine metapopulations of 
species with pelagic larval stages possess impor-
tant attributes that make them very different 
from most terrestrial metapopulations. In par-
ticular, the life history of marine species includes 
at least a subset of the following attributes: 
potential for very long-distance dispersal, huge 
fecundity and very large variance in reproductive 
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success, spatial distributions covering large geo-
graphic areas with very large local-population 
sizes and, importantly, several life stages show-
ing sequential ecological adaptations to different 
habitats (Palumbi & Hedgecock 2005). These 
life-history attributes and the physical proper-
ties of the marine environment, which include 
strong and asymmetric physical flows over a 
very extended and heterogeneous habitat matrix, 
exacerbate the importance of spatial processes 
(Riginos et al. 2016).

In principle one could expect that the spatial 
population structure will be strongly determined 
by ocean circulation, in which case species shar-
ing the same habitat should exhibit very similar 
spatial population structures. Surprisingly, this 
is not the case as shown by Selkoe et al. (2014) 
who uncovered extreme interspecific variation 
in spatial genetic patterns across 35 coral reef 
species inhabiting the Hawai’ian archipelago 
despite its almost perfect stepping-stone con-
figuration, which in principle should lead to an 
isolation-by-distance structure. Thus, the ques-
tion arises as to what are the physical and bio-
logical mechanisms that can lead to such large 
variability in spatial patterns. Ocean circula-
tion can generate invisible barriers to dispersal 
(e.g. eddies) leading to negligible connectivity 
between neighbouring local populations (Gilg 
& Hilbish 2003) but can also facilitate disper-
sal between geographically distant populations 
(Mitarai et al. 2009). This can explain the lack of 
an isolation-by-distance pattern but not the large 
differences in spatial structure among species 
sharing the same habitat.

Another important characteristic of the 
marine environment is the temporal variability 
in ocean circulation patterns, which can include 
flow reversals even along straight coastlines 
(Gaylord & Gaines 2000, Selkoe et al. 2006). 
Temporal variability in ocean currents can arise 
through temporal variations in wind forcing (e.g. 
Mitarai et al. 2008). But larval connectivity is 
inherently an unpredictable and heterogeneous 
process on annual time scales even in the absence 
of spatial and temporal variability (Siegel et al. 
2008). This stochasticity is due to advection 
of pelagic larvae by chaotic coastal circulation 
(Siegel et al. 2008). Thus, equilibrium assump-
tions underlying many statistical methods are 

likely to be violated leading to strong biases in 
estimates of population parameters.

Making inferences about 
metapopulation processes based 
on the structuring of genetic 
diversity

Marine population biologists have relied on the 
use of indirect methods based on natural tags as 
a means to overcome the challenge of directly 
observing pelagic species over large geographic 
areas. The most popular such approach uses 
molecular markers and population genetics tools 
and models. The underlying principle is that by 
studying the genetic structure of populations we 
gain a better understanding of the determinants 
of species ranges and factors that may facilitate 
the exchange of individuals between popula-
tions. Indeed, as any introductory population 
genetics book makes it clear, a species’ popula-
tion genetic structure is influenced by genetic 
(mutation and recombination) and ecological/
demographic processes (demographic stochas-
ticity, dispersal and selection). These two types 
of processes interact and leave complex genetic 
signatures that can be deciphered using the 
appropriate statistical methods.

Species ranges are strongly influenced by 
genetic drift, selection and dispersal. These pro-
cesses, in turn are themselves influenced by 
factors such as demography (population dynam-
ics, demographic history), geographic distance, 
topology, and many other environmental factors 
such as ocean currents, salinity, temperature, etc. 
(Fig. 1). Thus, it is possible to make inferences 
about the demographic history and ecology of 
species using the genetic signatures that the 
above-mentioned processes have left in the gene 
pool of a species. In principle, the only prerequi-
site is the availability of population genetic sam-
ples covering the species range or part thereof. 
Although this may be difficult, it is much easier 
than carrying out direct observations or mark-
recapture studies.

There are several statistical genetics meth-
ods for making inferences about demographic 
processes. These include testing for changes in 
population sizes (e.g. Luikart & Cornuet 1998, 
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Garza & Williamson 2001), estimating migra-
tion rates (Beerli & Felsenstein 2001, Wilson 
& Rannala 2003), and estimating population 
growth rates (Kuhner et al. 1998, Beaumont 
1999). These approaches allow us to estimate 
demographic parameters but they do not make 
inferences about the drivers of processes such 
as changes in population size, migration or local 
adaptation. This inference is carried out a poste-
riori and without taking into account the uncer-
tainty underlying parameter estimates. In the 
case of marine species, a typical example is the 
evaluation of the role of ocean circulation on 
larval dispersal (e.g. Galindo et al. 2006, Selkoe 
et al. 2010, White et al. 2010). The typical 
approach first obtains predicted oceanographic 
connectivity (as defined in Table 1) based on 
larval transport models (e.g. Cowen & Spo-
naugle 2009) and point estimates of genetic 

connectivity (FST or some related measure; see 
Table 1) using molecular markers and standard 
population genetics approaches (e.g. Selkoe et 
al. 2010, White et al. 2010). Using these point 
estimates, it then tests for correlations between 
oceanographic and genetic connectivity. How-
ever, ignoring uncertainty around point estimates 
precludes a rigorous evaluation of the validity 
of our conclusions. An alternative strategy is to 
use individual-based simulation models to obtain 
the genetic structuring (as measured by FST or 
related statistics) expected for a connectivity 
matrix generated by an oceanographic model 
(cf. Galindo et al. 2006). This predicted genetic 
differentiation is then compared with estimates 
obtained from real data in an ad-hoc fashion. 
Although this approach better integrates oceano-
graphic and genetic models, the use of indi-
vidual-based simulations to implement genetic 
models has several limitations (see Hoban et al. 
2012).

Incorporating other sources of 
information to test hypotheses about 
drivers

The rigorous testing of hypotheses about drivers 
of demographic processes requires the joint anal-
yses of genetic and non-genetic data. This can 
be accomplished using the Bayesian framework 
(e.g. Kittlein & Gaggiotti 2008, Gaggiotti et al. 
2009), which allows us to use the prior distribu-
tion to introduce non-genetic data with which we 
can generate alternative priors, each representing 
an alternative hypothesis. These hypotheses are 
tested using genetic data introduced through the 
likelihood function. This approach is visualised 
in Fig. 2 and has been used to develop methods 

Fig. 1. Hierarchical structure of drivers of genetic struc-
turing. Genetic data is obtained from a metapopulation 
subject to demographic, ecological, and genetic pro-
cesses. The demographic and ecological processes are 
themselves driven by environmental factors. Thus, the 
integration of genetic and ecological data will enable 
testing of the factors that drive ecological processes.

Table 1. Definitions of the connectivity types mentioned in the article.

Type	 Definition

Demographic Connectivity	 Dispersal of individuals among subpopulations that survive
	 until completion of the settlement process
Genetic Connectivity ↔ Reproductive connectivity	 Dispersal of individuals among subpopulations that survive to
	 reproduce
Oceanographic Connectivity	 Dispersal probability between locations as predicted by
	 oceanographic circulation patterns and larval traits
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aimed at making inferences about drivers of var-
ious population processes. These include factors 
driving the colonisation of new habitat (Gaggio-
tti et al. 2002, 2004, Okuyama & Bolker 2005), 
drivers of spatial genetic differentiation patterns 
(Foll & Gaggiotti 2006), drivers of migration 
(Faubet & Gaggiotti 2008), and drivers of local 
adaptation (de Villemereuil & Gaggiotti 2015).

Figure 3 presents a stylised and simplified 
Directed Acyclic Graph (DAG) describing the 
stochastic relationships between the parameters 
(circles) and data (squares) of the Bayesian 
model implemented in GESTE (Foll & Gaggiotti 
2006). This method allows testing hypotheses 
about the drivers of genetic differentiation in 
a metapopulation by focusing on population-
specific Fj

STs, which quantify the genetic differ-
entiation between each local population j and the 
whole metapopulation. The likelihood function 
describes the probability of observing allele fre-
quency counts given the allele frequencies p = 
(pij) at each locus i and population j, and given 
genetic differentiation Θ = (θj), where θj = (1/
Fj

ST) – 1. The prior of θj is a log-normal distribu-
tion with mean μj and variance σ2. The environ-
mental data are introduced through the means 
of the log-normal distributions using a linear 
model. In this example, we consider two envi-
ronmental variables (e.g. connectivity and salin-
ity) described by vectors E1 = (e1

1, …, ej
1, …, 

eJ
1) and E2 = (e1

2, …, ej
2, …, eJ

2), where ej
i is the 

observed value of environmental variable i for 

population j. If we consider an interaction term, 
then we can generate nine alternative models 
depending on which environmental variables are 
used to define the prior. The posterior distribu-
tion of each model is estimated using a Revers-
ible Jump MCMC algorithm (Green 1995).

Challenges posed by the 
peculiarities of marine 
metapopulations and approaches 
to overcome them: The example 
of marine connectivity

Although a well-developed body of theory and 
statistical methods exist to analyse population 
genetic data (e.g. Balding et al. 2007), the pecu-
liarities of marine species and the environment 
they inhabit limits the power of existing methods 
to carry out demographic inference. There are 
several problems but the most important one is 
that large local-population sizes and complex life 
histories allowing long-distance dispersal lead 
to very weak genetic signatures. For example, a 
very sharp decrease in population size may still 
result in effective sizes that are unlikely to leave 

Fig. 2. Schematic representation of the Bayesian 
approach as implemented in e.g., Gaggiotti et al. (2002, 
2004). In this example, there is only one parameter 
to estimate, which could be the allele frequency, p, at 
a particular locus. The prior distribution, π(p), is used 
to introduce the non-genetic data and the likelihood 
function allows the incorporation of genetic data, G, 
with which we estimate the posterior distribution of p, 
π(p|G).

Fig. 3. Simplified and stylised Directed Acyclic Graph 
(DAG) of the statistical method implemented in GESTE 
(Foll & Gaggiotti 2006). The DAG describes the sto-
chastic relationship between parameters (circles) and 
data (squares) of the Bayesian model. The effect of 
environmental factors E 1 and E 2 on the degree of 
genetic differentiation, Θ, are quantified by α1 and α2, 
respectively while the effect of the interaction is meas-
ured by α3 and α0 is the intercept. The prior for Θ is 
lognormal with mean μ and variance σ2. The allele fre-
quency distributions at each locus and local population 
are described by the multidimensional matrix p and the 
genetic data (sample allele counts for each locus and 
population) by the multidimensional matrix G.
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a strong bottleneck signature (e.g. Gaggiotti & 
Vetter 1999) or genetic differentiation among 
local populations can be very weak, which limits 
inferences about migration (Waples 1998). Two 
other important problems are the large spatial 
scale of marine metapopulations, which pre-
cludes sampling of all extant populations, and 
the extreme temporal variability of the marine 
environment that leads to non-equilibrium 
dynamics. This latter challenge arises because 
most statistical genetic methods to estimate pop-
ulation parameters (e.g. growth rates, migra-
tion rates, population sizes) assume equilibrium 
conditions (e.g. migration-drift or mutation-drift 
equilibrium). In this regard, it is important to 
note that the extreme temporal variability of 
the marine environment can lead to stochastic 
migration patterns, which in turn have important 
consequences on the genetic structure of meta-
populations (e.g. Gaggiotti 1996, Gaggiotti & 
Smouse 1996) and, therefore, on estimates of 
demographic parameters from genetic data.

In what follows I will address these three 
challenges to the use of population genetics 
methods and the approaches that can allow us 
to overcome them. Throughout I will focus 
attention on the estimation of connectivity in 
marine species, an important knowledge gap in 
marine sciences that needs to be filled in order 
to advance our understanding of ecological and 
evolutionary processes in the marine realm (e.g. 
Thorrold et al. 2002, Lipcius et al. 2008, Gaines 
et al. 2010).

Connectivity, broadly defined as the 
exchange of individuals among local popula-
tions, is a fundamental spatial attribute of spe-
cies and metapopulations and has been the focus 
of much research in the fields of ecology and 
evolution. At the ecological level, connectivity 
is one of the main drivers of the persistence and 
resilience of populations (Hastings & Botsford 
2006), while at the evolutionary level it influ-
ences the extent to which species can adapt to 
local conditions (e.g. Hellberg 2009). The study 
of connectivity is also of fundamental impor-
tance in conservation biology where it is essen-
tial for effective spatial management and design 
of protected areas (Gaines et al. 2010).

The definition of connectivity given above 
is very general and, as such, it can cover many 

different aspects including physical transport, 
demographic exchanges and gene flow. Table 1 
lists definitions for the different types of con-
nectivity that are mentioned in this review. In 
what follows I will be referring to demographic 
connectivity, which is the result of reproduction, 
dispersal and recruitment (Botsford et al. 2009) 
and is measured shortly after larval settlement 
but before reproduction. Thus, demographic con-
nectivity cannot be equated to gene flow because 
new recruits may not survive long enough to 
reproduce. Note, however, that it still is an 
important driver of this evolutionary force.

Although very informative, studies of con-
nectivity so far have been largely descriptive (cf. 
Botsford et al. 2009) and only provide qualita-
tive estimates of this fundamental parameter 
(Christie et al. 2017). The final objective of any 
empirical approach to quantifying demographic 
connectivity is to estimate a dispersal matrix 
that can be integrated and related to features 
of connectivity identified by models as driv-
ing metapopulation dynamics (Botsford et al. 
2009). Thus, below I will only address popula-
tion genetic methods that can estimate migration 
rates, mij, between pairs of populations i and j. 
Since the focus is on demographic connectivity, 
mij represents the proportion of new recruits in 
local population i that were contributed by local 
population j. It should be noted that there are 
many other population genetics methods that 
have been used in connectivity studies but, as 
explained below, they are not appropriate for the 
quantitative estimation of connectivity.

When using genetic data, it is important to 
note that the temporal scale of the estimates 
depends on the population genetics framework 
being used by the statistical method (Gaggio-
tti 2004). Methods based on coalescent theory 
(Kingman 1982) such as Migrate (Beerli & 
Felsenstein 2001), Lamarc (Kuhner 2006) or 
iMa (Hey & Nielsen 2007) provide estimates 
of connectivity over evolutionary time scales, 
while methods based on multi-locus genotypes 
approaches (cf. Gaggiotti 2004) such as Bayes-
Ass (Wilson & Rannala 2003), BIMr (Faubet & 
Gaggiotti 2008) or the method described by Bro-
quet et al. (2009) provide estimates of migration 
rates over ecological time (i.e. during the last 
one or two generations). Naturally, marine ecolo-
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gists are interested in ecological estimates and, 
therefore, in what follows I will mostly focus 
on multi-locus genotype approaches. I will start 
with the challenges posed by spatial scale and 
temporal variability, for which potential solu-
tions exist, and then address the more difficult 
problem posed by the low genetic differentiation 
observed in many marine species, which require 
the development of a new statistical method.

Spatial scale

Although population genetics approaches are 
easier to implement than mark–recapture stud-
ies, the spatial scale of marine metapopulations 
can be vast and, therefore, we can only sample 
a small fraction of all the local-populations they 
comprise. This incomplete sampling can lead to 
the so-called “ghost population” effect whereby 
unsampled populations that exchange migrants 
with some of the sampled populations can 
upwardly bias migration rate estimates between 
sampled populations (Beerli 2004, Slatkin 2005).

It is impossible to completely overcome this 
problem but there are spatial statistic techniques 
that can help minimise it by estimating allele 
frequencies in the unsampled populations. Some 
of them have already been applied in the field 
of population genetics. For example, Vounastou 
et al. (2003) present a method based on a Mul-
tivariate Conditional Autoregressive (MCAR) 
approach and use it to model spatial variation in 
HLA-B allele frequencies. Wasser et al. (2004) 
used a Gaussian Process model to implement a 
continuous assignment method that estimates 
allele frequencies of unobserved locations and 
then assigns individuals to any location regard-
less of whether or not they were sampled. This 
method was recently extended by Rundel et 
al. (2013), who use MCMC to sample from 
the posterior distribution of allele frequencies 
conditional on the allele counts at observed loca-
tions. This allows them to introduce uncertainty 
in the spatial covariance parameters. A similar 
approach can be used to estimate migration 
rates. Moreover, it is possible to incorporate 
the output of larval transport models in order to 
help improve the estimation of allele frequencies 
in unsampled locations. Such a method can be 

implemented using the Stochastic Partial Differ-
ential Equation approach (SPDE; Lindgren et al. 
2011), which can easily accommodate all kinds 
of geographically referenced data.

Temporally stochastic circulation 
patterns

As mentioned before, temporal variability in 
ocean circulation patterns is very large and can 
even include flow reversals. The time scale on 
which these changes operate is very short and, 
therefore, the long-generation time of many 
marine species can cover several years during 
which ocean circulation patterns exhibited 
extreme variability. In this regard, it is impor-
tant to note that population genetics inference 
methods typically assume discrete generations 
and, therefore, each time step correspond to one 
generation. The direct consequence of this is that 
the estimates of per-generation migration rates 
provided by genotype-based methods represent 
population averages over several years. This is 
a real problem because a thorough understand-
ing of connectivity and its drivers cannot be 
accomplished without taking into consideration 
temporal variability in ocean circulation patterns 
(Cowen & Sponaugle 2009). An important ques-
tion in this regard is the extent to which stochas-
tic circulation patterns translate into temporally 
stochastic connectivity patterns. Although the 
larval stages of marine species may not have 
the swimming abilities necessary to overcome 
advection and diffusion transport processes, their 
life history may provide mechanisms that can 
lead to dispersal patterns that differ from those of 
inert particles in a fluid environment (cf. Cowen 
& Sponaugle 2009). For example, reproduction 
of many marine species takes place at specific 
times of the year and this can decrease to some 
extent the effects of the physical environment. 
Also, the duration of the pelagic larval stage can 
mediate the effects of physical processes (Shanks 
et al. 2003, Selkoe & Toonen 2011). Moreover, 
some larvae exhibit complex behaviour such as 
vertical migration and oriented horizontal swim-
ming, which allows them to have some control 
over the direction and extent of their dispersal 
(Shanks 2009).
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There is only one way in which the effect 
of temporal stochastic circulation patterns can 
be evaluated and this is by collecting spatio-
temporal genetic samples. More precisely, we 
need tissue samples from adults and recently 
settled recruits in consecutive years (e.g. as 
in Christie et al. 2010). Instead of estimating 
local-population connectivity, the focus is on 
estimating larval connectivity, also referred to 
as “demographic connectivity” (Burgess et al. 
2014), which requires the inference of the ori-
gins and destination of individual larvae. This 
may sound like an unachievable objective but 
there are several examples of studies that have 
done precisely this using assignment tests or par-
entage analyses (e.g. see references in Burgess et 
al. 2014). As Christie et al. (2017) demonstrate 
in a recent simulation study, neither of these 
methods is an ideal solution to the problem of 
estimating a demographic connectivity matrix 
as they can only provide qualitative evidence of 
connectivity between populations. Additionally, 
even under ideal conditions they cannot incor-
porate the uncertainty in the larvae origins into 
an estimate of demographic connectivity, being 
able only to provide very rough point estimates 
of migration between populations.

A more rigorous approach to estimate demo-
graphic connectivity is the Genetic Stock Iden-
tification method (e.g. Pella & Masuda 2001, 
Gaggiotti et al. 2002, Gaggiotti et al. 2004). This 
method was originally developed to estimate the 
proportionate contribution of different freshwater 
salmon stocks to the genetic mixture of harvested 
fish (e.g. Smouse et al. 1990) from a genetic 
sample of the harvest and baseline samples from 
all candidate stocks. The GSI method was later 
extended to identify the drivers of recent colo-
nization events in a metapopulation (Gaggiotti 
et al. 2002, 2004), a scenario resembling that 
considered for the estimation of demographic 
connectivity. There are, however, some important 
differences between the scenario assumed by 
GSI methods and that envisaged for the estima-
tion of connectivity (see Fig. 4). More precisely, 
the GSI approach assumes two different types of 
demographic units, the potential source popula-
tions or stocks where reproduction takes place 
and the genetic mixtures, which could be found 
for example in foraging grounds. The standard 
GSI approach considers a single genetic mix-
ture but the method has been extended to allow 
for the simultaneous analysis of several genetic 
mixtures (Bolker et al. 2007). On the other hand, 
the scenario that we need to consider for the 
estimation of connectivity does not make a dis-
tinction between local populations; reproduction 
takes place in all of them and all can contrib-
ute migrants to other local populations. This is 
the scenario considered by BayesAss (Wilson 
& Rannala 2003) and BIMr (Faubet & Gaggio-
tti 2008) but these methods do not distinguish 
between adults and recently settled recruits and, 
therefore, provide estimates of migration rates 
averaged over several years that may encompass 
very different circulation patterns (see above). 
The method of Broquet et al. (2009) is based 
on samples taken at two different times, before 
and after dispersal and, therefore, is in principle 
better suited to estimate demographic connec-
tivity. Nevertheless, as opposed to GSI-based 
methods, which use allele frequency counts in 
the source populations and individual genotypes 
in the mixture as input data, Broquet et al. (2009) 
use genotype counts before and after dispersal. 
This entails the estimation of genotype frequen-
cies instead of allele frequencies; which requires 

Fig. 4. Differences between the scenario considered 
by the Genetic Stock Identification method and the 
scenario that needs to be considered for the estima-
tion of connectivity. GSI approach assumes two differ-
ent types of demographic units, the potential source 
populations or stocks where reproduction takes place 
(Si) and the genetic mixtures (Mi) that do not contribute 
migrants. The scenario that we need to consider for 
the estimation of connectivity does not make a distinc-
tion between local populations (Si); reproduction takes 
place in all of them and all can contribute migrants to 
other local populations. In both cases the width of the 
arrows represent the relative magnitudes of the con-
tribution of the different populations. For simplicity, the 
connectivity scenario considers symmetric migration 
but this is not necessary.
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much larger sample sizes per population. This is 
illustrated by the results of the simulation study 
they present; in a scenario that only considers 
three local populations they observed very strong 
bias and low precision even when sampling 25% 
and 100% of pre- and post-dispersal individu-
als respectively. Thus, their method cannot be 
applied to species with very large population 
sizes, in which case it is only possible to sample a 
very small fraction of each local population. The 
limitation of Broquet et al.’s (2009) method can 
be overcome if we focus on allele frequencies 
among pre-dispersal individuals. Below I present 
a formulation that extends a previous GSI-based 
method (Gaggiotti et al. 2004) to allow for the 
estimation of the full migration matrix. But first 
I would like to address the third challenge posed 
by marine metapopulations.

Weak genetic differentiation

The very large local-population sizes of marine 
species with larval dispersal limit the effect of 
genetic drift and result in very low genetic dif-
ferentiation among local populations (Waples 
1998). This greatly limits the power of methods 
to estimate migration rates using genetic data 
(e.g. BayesAss or BIMr; see above). New devel-
opments in sequencing technologies (NGS) may 
help overcome this limitation but population 
genetic data is not the only source of information 
that can be used to estimate connectivity.

An alternative approach is to use micro-
chemical fingerprinting to assign individu-
als to source populations. Calcified structures 
in marine invertebrates and fish (e.g. otoliths, 
shells, statoliths) can be used as natural tags of 
natal origins. These geochemical tags are the 
result of environmental conditions (temperature, 
salinity, seawater chemistry) that are recorded by 
the elemental composition of the calcified struc-
ture (Thorrold et al. 2007). Thus, larvae develop-
ing in areas that have different seawater char-
acteristics will develop calcified structures that 
differ in their elemental composition (Zacherl et 
al. 2003). Hence, the basic prerequisite of this 
approach is substantial environmental variation 
across habitat patches or breeding sites (Thor-
rold et al. 2007), which parallels the requisite 

of genetic differentiation when using molecu-
lar markers. Another limitation of microchem-
istry is the need to characterise the elemental 
composition of young individuals across large 
geographic areas. However, this problem can 
be minimised using the same geostatistical tech-
niques described for genetic data (see above).

Overcoming or at least minimising the limita-
tions of genetic and microchemistry approaches 
require spatially and temporally extensive sam-
pling and thorough molecular or chemical analy-
ses. Thus, marine ecologists have resorted to 
using high-resolution biophysical models con-
sisting of an underlying ocean circulation model 
to describe motion and an overlying particle-
tracking model that describes the physics and 
biology of the larvae. Although these can be 
highly sophisticated incorporating some biologi-
cal reality, they do not cover the full larval life 
history or they do not encompass the spatial 
extent of the dispersal process (Cowen & Spo-
naugle 2009). Doing this is still extremely time 
consuming and computationally expensive so 
most biophysical models make several simplify-
ing assumptions that need to be verified. Thus, 
they do not constitute an inferential method. 
Rather, they provide predictions of connectivity 
that need to be validated with empirical data.

It is clear that no single approach can deal 
with the challenges faced by the studies of 
marine connectivity. They all have strengths and 
weaknesses and the best approach is to use an 
integrative framework that harnesses the infor-
mation provided by these three independent data 
types to carry out statistical inference.

An integrative Bayesian 
framework

The need for combining different sources of 
information to estimate connectivity has been 
highlighted several years ago (e.g. Thorrold et 
al. 2002, Hedgecock et al. 2007) and there have 
been several mentions of the need to validate 
predictions made by biophysical models using 
real data (e.g. Thorrold et al. 2007, Cowen & 
Sponaugle 2009). Thus, over the last few years, 
there have been several attempts to integrate 
two different types of data; for example, output 
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of biophysical models and genetic data (Selkoe 
et al. 2010, White et al. 2010, Alberto et al. 
2011, Rivera et al. 2011) or microchemistry data 
(Lopez-Duarte et al. 2012). Similarly, there have 
been studies that combine genetic and micro-
chemistry data (e.g. Perrier et al. 2011, Tanner 
et al. 2014). All these attempts, however, simply 
apply the two methods in tandem and then com-
pare inferences or predictions obtained with the 
different approaches.

Although not specifically aimed at the esti-
mation of demographic connectivity, statistically 
rigorous approaches have been proposed to carry 
out joint statistical inference using genetic and 
microchemistry data. Smith and Campana (2010) 
couple a genetic stock identification formulation 
based on allele frequencies with microchemis-
try data in order to estimate the proportionate 
contribution of different fish stocks to a genetic 
mixture. One disadvantage of this method is 
that instead of using individual genotypes in the 
mixture as input, it uses allele frequencies and, 
therefore, does not fully exploit all the informa-
tion available in genetic data. A more recent 
study by Rundel et al. (2013) combines genetic 
and stable isotope data in a Bayesian framework 
for assigning wintering songbirds to breeding 
grounds. While not designed to generate a con-
nectivity matrix, the study clearly shows how 
integration of data can increase spatial preci-
sion and accuracy of assignment beyond levels 

achievable from either the genetic or isotopic 
assignment techniques alone.

Below, I will introduce a Bayesian frame-
work to integrate data from the three leading 
connectivity techniques in marine science: genet-
ics, microchemistry, and biophysical modelling. 
Full details of the method and accompanying 
software will be published elsewhere. Here I 
will simply describe how the hierarchical Bayes-
ian approach can be used to implement such a 
method. The underlying rationale is that genet-
ics and microchemistry provide raw data for 
estimating parameters of a probabilistic model 
of migration (connectivity) between sources and 
recruit sampling sites. Biophysical-population 
models, on the other hand, provide predictions of 
connectivity patterns from existing knowledge 
about the species’ life history and an ocean cir-
culation model. Thus, the Bayesian framework 
incorporates genetic and microchemistry data 
through the likelihood function, while the con-
nectivity predictions from the biophysical model 
are incorporated through the prior used for the 
migration rates. Figure 5 presents a Directed 
Acyclic Graph describing the approach.

Description of the Bayesian framework

We extend the Genetic Stock Identification 
approach of Gaggiotti et al. (2002, 2004) to 
allow for the estimation of the full connectiv-
ity matrix. Assume that nk

r recruits (k = 1, …, 
K) were sampled from each of K sites and that 
each one was genotyped for L loci and assayed 
for t trace elements. Further assume that the 
same was done with ns

e (s = 1 ,…, S) pre-
dispersal individuals from each of S potential 
source populations (typically these will be the 
same as the pre-recruits sampling sites). Let G 
= (Ghk) be the observed multilocus genotypes 
of nr recruits at L scored loci, where Ghk = (Ghkl) 
and Ghkl denotes the genotype of recruit h at site 
k and locus l. The genetic data from the S source 
populations consists of allele counts Z = (zsl), 
where zsl = (zsla) and zsla is the count of allele 
a at locus l for source population s. Similarly, 
let Xr = (Xr

hk) denote the elemental ratios of nr 
recruits, where Xr

hk = (Xr
hkj) denotes the vector of 

T (= t – 1 because data is expressed as the ratio 

Fig. 5. Direct Acrylic Graph (DAG) of the Bayesian 
formulation for the estimation of the connectivity matrix. 
Square nodes denote known quantities (data) and the 
circles represent parameters to be estimated.
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of each of T elements to a reference element, 
often calcium) elemental ratios for recruit h from 
site k. Microchemistry data from the S sources 
consists of elemental ratios Xe = (Xe

is) of pre-
dispersal individuals, where Xe

is = (Xe
isj) denotes 

the vector of T elemental ratios for pre-dispersal 
egg i from source population s.

To minimise the ghost population effect we 
divide the study area into C grid cells and estimate 
maps of allele frequencies, Pref = (pcl) (where c = 
1, …, C and s  C), and elemental ratios, Eref = 
(ec) from Z and Xe, respectively, using spatial 
smoothing techniques (see Appendix).

The likelihood function for the estimation of 
connectivity is an extension of the Genetic Stock 
Identification approach presented by Gaggiotti 
et al. (2002, 2004) that includes microchemistry 
data. More precisely, the probability of observing 
an individual with genotype Ghk and profile Xr

hk is 
P(Ghk, Xr

hk|pc, ec, mk) = P(Ghk|pc)P(Xr
hk|ec)mkc, 

where mk = (mkc) and mkc is the probability that 
a recruit sampled at site k originated from grid 
cell c. P(Ghk|pc) is given in Gaggiotti et al. (2004: 
813–814), while P(Xr

hk|ec) is multivariate normal. 
Thus, the likelihood function with both genetic 
and microchemistry data are L(G, Xr|pc, ec, mk) 
= P(Ghk, Xr

hk|pc, ec, mk), where M = 
(mk). The DAG describing this likelihood func-
tion is depicted in Fig. 5 (lower middle panel). 
Computation of the likelihood integrates over 
unobserved allele frequency and microchemistry 
surfaces using the Monte Carlo approximation 
described by Rundel et al. (2013).

The prior for M is defined using the results 
of a coupled biophysical-population model that 
produces point estimates of the probabilities of 
the sources of virtual recruits at each site (see 
below). Let the output of the model be noted Y = 
(ykc), where ykc is the probability that a randomly-
selected recruit at sampling site k is from grid 
cell source c. These results are incorporated by 
assuming that the vector m = (mkc) follows a 
Dirichlet distribution with parameters ρkc given 
by ρkc= ρ0ykc, where ρ0 determines the variance of 
the ρkc values and has to be estimated. We assume 
that the priors for ρk0 are uniform between 0 
and 100 for all k so as to obtain a weak prior. 
Thus, the prior for the vector of migration rates 
between all potential source populations and a 
given site k, mk = (mkc), is given by

 p(mk|ρk1, ρk2, …, ρkC) =
 .

Having observed the data, our knowledge 
about the parameters is given by the posterior 
distribution:

	 P(M, s0|G, Xr, Xref, Eref, Y) =
	 L(G, Xr| Pref, Eref, M)p(M|ρ0, Y)p(ρ0).	 (1)

This posterior is estimated using standard 
MCMC approaches (e.g. Brooks 1998). The 
number of parameters that need to be estimated 
is very large, which can lead to convergence 
problems. In this regard, it is important to note 
that related methods we developed the past 
(Gaggiotti et al. 2002, 2004, Faubet & Gag-
giotti 2008) require the estimation of similar 
number of parameters and involve manageable 
convergence times (a couple of days of compu-
tation time). Moreover, the method described 
above incorporates additional non-genetic data 
directly in the likelihood function, which should 
help avoid convergence issues. Finally, risks 
associated with computation time of MCMC 
approaches can be minimised by code paralleli-
sation and use of techniques to improve mixing 
(see Brooks 1998), which we have implemented 
in other Bayesian methods we have developed 
(Faubet & Gaggiotti 2008, Foll & Gaggiotti 
2008, Foll et al. 2014).

Concluding remarks

The adoption of the metapopulation paradigm 
among marine ecologists has lagged well behind 
that of terrestrial ecologists (Sale et al. 2006). 
According to Roughgarden (2006), the reason 
for this was an initial rejection due to long 
entrenched views among the community of 
marine ecologists, which was focused on small-
scale manipulative experiments aimed at explain-
ing intertidal community structure as driven by 
local dynamics and species interactions. How-
ever, this has changed substantially during the 
last decade. Indeed, metapopulation theory has 
now been integrated into marine ecology research 
and is being actively used as a helpful framework 
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for describing spatial population processes, for 
asking new research questions, and for planning 
the management and conservation of marine spe-
cies (cf. Sale et al. 2006). Although Ilkka focused 
on terrestrial systems, marine ecologists are well 
aware of the great importance of his work for 
their discipline, as attested by the fact that he 
was invited to co-author the introductory chapter 
of the landmark book Marine Metapopulations 
(Kritzer & Sale 2006).

In this article, I have highlighted the many 
challenges faced by marine ecologists interested 
in the study of marine metapopulations and have 
mentioned some of the approaches that can be 
used to overcome these difficulties. In particular, 
I have focused on connectivity, an important 
attribute of metapopulations that represents an 
important knowledge gap in marine ecology 
(Lipcius et al. 2008, Gaines et al. 2010). There 
is an urgent need to develop approaches aimed 
at estimating connectivity in marine metapopu-
lations because it is essential for the design of 
management and conservation plans for marine 
species. Indeed, marine ecosystems around 
the world are being subject to ever increasing 
demands for their important human benefits, 
usually described as ecosystem services. This 
increased demand comes from well-established 
sectors such as fishing and transportation that 
want to expand their activities as well as from 
emerging sectors such as renewable energy and 
offshore aquaculture (White et al. 2012). Mini-
mising the combined impact of these activi-
ties requires the use of spatial management as 
an evolving paradigm for marine conservation 
policy. In particular, there has been a call for the 
use of networks of marine protected areas that 
can safeguard single species, as well as whole 
communities and even ecosystems, against 
anthropogenic perturbations while at the same 
time benefit fisheries by serving as a reservoir 
of recruits into fishing areas (Gaines et al. 2010, 
Harrison et al. 2012). In this spatial context, it 
is essential to be able to quantify exchanges of 
individuals among populations.

Besides estimating connectivity, the integra-
tive approach can be used to validate the predic-
tions of biophysical models. This can be done by 
comparing the fit of the Bayesian formulation 1, 
which incorporates predictions of the biophysi-

cal model, with that of a formulation where the 
prior for the migration rate is based on an island 
model or a stepping stone model. It is then pos-
sible to use model selection criteria such as 
DIC (Spiegelhalter et al. 2002) to determine the 
model that best fit the data. The framework can 
be further used to refine biophysical models in 
an iterative fashion (cf. Cowen & Sponaugle 
2009). The fit of the Bayesian formulation 1 
using a basic biophysical model can be com-
pared with that of a formulation that uses a 
refined version of the basic model. If the modi-
fied version is a better fit, further refinements can 
be attempted until increased model complexity 
no longer improves the fit to the genetic and 
microchemistry data.

Besides the above-mentioned practical appli-
cations, the development and application of new 
integrative approaches will facilitate the study of 
the patterns, causes and consequences of spatial 
structuring in marine species and, therefore, will 
greatly contribute towards the advancement of 
marine ecology research.

Marine metapopulations will always be more 
difficult to study than the classic terrestrial meta-
populations studied by Ilkka. For example, it 
would be very difficult and costly to carry out 
field experiments equivalent to those used to 
study spatial dynamics of colonisation in the 
Glainville fritillary and its two larval primary 
parasitoids (van Nouhuys & Hanski 2002). 
These field experiments required the manipula-
tion of larvae and repeated direct observation of 
several experimental local populations, some-
thing that would be difficult to accomplish with 
the much smaller pelagic larvae that character-
ise the marine metapopulations considered here. 
Nevertheless, the methods described above can 
be modified to make them applicable in experi-
mental settings, which would allow marine ecol-
ogists to carry out large-scale field experiments 
without the need of direct observations. This in 
turn will facilitate the application of metapopula-
tion theory to marine systems.
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Appendix

There are several approaches for the estimation of maps of allele frequencies and elemental rations. 
These include kriging (e.g. Goovaerts 1999), Multivariate Conditional Autoregressive models 
(MCAR; Gelfand & Vounatsou 2003), and Stochastic Partial Differential Equation approach (SPDE, 
Lindgren et al. 2011). Here I use a hierarchical Bayesian approach with a Multivariate Conditional 
Autoregressive prior, [MCAR(α, Λ); Gelfand & Vounatsou 2003] for the spatial trend. Allele fre-
quency counts Z are modelled using a multinomial(ns

e, pcl) likelihood with log(pcla/pclKl
) = πla + φcla. 

The observed elemental ratios Xe are modelled with a multivariate normal N(μc, ∑) with μc = ρc + Fc. 
The spatially structured random effects φcla and Fc are modelled as conditional autoregressive priors 
(MCAR(α,Λ)). Briefly, Φ ~ N(0,[(D – αW)  Λ]–1), where α  (–1,1) is the smoothing parameter, 
Λ is a Kl ¥ Kl (for allele frequencies) or T ¥ T (for elemental ratios) positive definite and symmetric 
matrix, D = Diag(mi) with mi being the number of neighbours of region i, and W denotes the adja-
cency matrix of the map (i.e., wii = 0; wij = 1 if i is adjacent to j, and 0 otherwise).The symbol  is the 
Kronecker product. The DAGs of this Bayesian model are shown in Fig. 5 (left- and right-hand-side 
panels for genetic and microchemistry data, respectively).


