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Hybridogenesis is a hemiclonal mode of reproduction occurring in several species 
complexes with various effects on the ecology and genetics of the involved species. 
The complexity of these systems is illustrated with the example of Western Palearctic 
waterfrogs. Deviations from original models of hybridogenesis are discussed, proofs for 
recombination between the parental genomes of the hybrid are reviewed, and the sex 
ratio disturbance found in many populations is explained. The review shows that bene-
fits deriving from hybridogenesis, such as increased genetic variability and colonization 
ability, seem to be primarily directed toward R. ridibunda, but also have an impact on 
the other parental species. It is concluded that, due to mating possibilities and fertiliza-
tion success, regions with mixed populations of two (or more) parental species and their 
hybridogenetic associate might be especially of interest in investigating recombination 
patterns and relating these to the population dynamics of the parental species.

Introduction

Hybridogenesis is a hemiclonal mode of repro-
duction that has been observed in several spe-
cies complexes from a range of different taxa: 
Bacillus (Mantovani & Scali 1992), Poeciliopsis 
(Schultz 1966), Rana (Berger 1973a), Trophido-
phoxinellus (Carmona et al. 1997). Such systems 
seem to be highly complex and interesting for 
evolutionary ecology due to the various impacts 
hybridogenesis has on the ecology and genet-
ics of the involved species (e.g. Beukeboom & 
Vrijenhoek 1998). The interest in hybridogenetic 
systems, especially in hybridogenetic waterfrogs, 
is illustrated by the recent accumulation of evo-

lutionary ecology studies on those frogs (e.g. 
Hellriegel & Reyer 2000, Pagano et al. 2001, 
Som 2001, Vorburger 2001, Altwegg 2002, Vor-
burger & Reyer 2003).

The initial step for the establishment of a 
hybridogenetic system is usually the hybridiza-
tion of two parental species PI and PII, each 
submitting one set of chromosomes to the hybrid 
H (Fig. 1). Results from crossing experiments 
(Berger 1973b) suggested that the genome of 
one parental species (i.e. PI) is excluded from 
the gametes of the hybrid. The remaining paren-
tal genome (i.e. PII) subsequently undergoes 
endoreduplication and, since incompatibilities of 
non-sister chromosomes are avoided, leads to a 
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fully fertile hybridogen. The hybrid itself repro-
ductively mimics the parental species, whose 
genome is kept and endoreduplicated (Schultz 
1969, Tunner 1973). In allopatry to that parental 
species, the hybridogens’ lineage is maintained 
by backcrosses of the hybridogen with the sym-
patric parental species PI (Fig. 1).

While current literature provides many inter-
esting insights in either the ecology or the genet-
ics of hemiclonally reproducing waterfrogs, an 
overall view is lacking perhaps due to the fact that 
hybridogenetic systems appear highly complex. 
Here, I will illustrate the complexity of these 
systems, discuss deviations from original models 
of hybridogenesis, and attempt to tie the ecology 
and genetics of this species group with the aim to 
stress important issues for future research.

Deviations from the common 
model of hybridogenesis

Currently, several hybridogenetic modes in 
waterfrogs have been described in regard to the 

exclusion of parental species genomes (Polls 
Pelaz 1994). The most common model seems 
to be R-hybridogenesis (Fig. 1) as proposed by 
Schultz (1969) and Tunner (1973). However, 
flowcytometric analyses have shown the occur-
rence of gametes of both parental species in 
the germ cell lineage of the same individual 
(Vinogradov et al. 1991). Those results support 
the R+-Anti-R hybridogenetic mode (sensu Polls 
Pelaz 1994), defined by the random exclusion of 
either the PI or the PII genome. Further devia-
tions from R-hybridogenesis have been reported, 
as exchange of alleles between the two parental 
species is appreciable (Table 1).

The detection of PII (R. ridibunda) alleles 
in PI gene pools (e.g. Mezhzherin & Morozov-
Leonov 1997, Pagano & Schmeller 1999) and 
non-hybrid offspring from matings of hybrids 
also suggest that parental genomes recombine 
during hybridogenetic gametogenesis (Vorburger 
2001). Opportunity for recombination might be 
given due to gradual elimination of a parental 
genome, as supported by the occurrence of aneu-
ploid oogonia with predominating chromosomes 
of R. ridibunda (Tunner & Heppich-Tunner 
1991) and nucleus like bodies (NLB), containing 
fragments of one parental species, observed in 
the cytoplasm of gonial cells (Ogielska 1994). 

The cytological processes during hybridog-
enetic gametogenesis are hardly understood and 
recombination in hybridogenetic gametogene-
sis remains controversial; particularly, because 
recombination events have not been reported 
in experimental crosses so far. However, the 
mediation of geneflow between two parental 
species via the hybridogens has been evidenced 
in natural populations (Table 1). The reason for 
the discrepancy appears to lie in the low prob-
ability of detecting recombined genotypes. For 
instance, if only 1 in 1000 hybrids recombines 
the parental genomes in a fraction of its gametes, 
to detect recombination (i) this one hybrid has 
to be backcrossed with the parental species, (ii) 
the gametes containing the recombined genomes 
have to be reproductively successful, and (iii) all 
offspring (several hundreds to thousands) have 
to be genetically analyzed.

Such a huge experimental crossing combined 
with genetic analysis has not yet been under-
taken. In contrast, it can be assumed that in natu-
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Fig. 1. The hybridogenetic reproduction model (R-
hybridogenesis sensu Polls Pelaz 1994) as proposed 
by Schultz (1969) and Tunner (1973). The genomes 
of different species are marked in grey (PI) and black 
(PII). PI = R. lessonae, R. perezi, R. bergeri (grey); 
PII = R. ridibunda; (black), H = R. kl. esculenta, R. kl. 
grafi, BR-hybrid. Hybridogenetic systems originate from 
matings between PI and PII or, alternatively, by mat-
ings between a hybridogen of an existing system with 
another PI species (Arano et al. 1994). The hybrid H 
is rarely infertile (exceptions reported from the Danube 
Delta, Günther et al. 1991), as the primary gametes of 
the hybridogen contain sister chromatid-derived copies 
of each PII chromosome due to the exclusion of the PI 
genome and the subsequent endoreduplication of the 
PII genome (Tunner & Heppich-Tunner 1991). There-
fore, hybridogenetic gametogenesis has been assumed 
to represent a reproductive mode without genetic 
recombination between the two parental genomes. 
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ral populations copies of recombined genomes 
are generated by normal Mendelian segregation 
once they have re-entered the gene pool of the 
respective parental species. Hence, many copies 
of a recombined genome, and therefore a high 
number of recombined genotypes, are present 
and are more likely to be detected than in experi-
mental conditions.

Consequences of recombination

Studies assessing the effects of gene exchange 
on the ecology and genetics of parental spe-
cies are not yet available. Gene exchange, how-
ever, might break up coevolved gene complexes 
resulting in disturbed epistasis (Mayr 1963), as 
R. ridibunda belongs to a phylogenetically dif-
ferent sister species group than any of the other 
parental species (Plötner 1998, Plötner & Ohst 
2001). Newly originated parental genotypes car-
rying alleles of the opposite parental species 
may therefore be unviable and may not repro-
duce (Mayr 1963, Tregenza & Wedell 2000). 
However, the diploid chromosomal system may 
provide a field of recombination (Carson 1975), 
where only a fraction of the whole chromosome 
“field” is amenable to exchange between spe-

cies. Hence, if recombination between species 
genomes occurs outside balanced gene blocks, 
newly originating (parental) genotypes should 
be viable (Ortíz-Barrientos et al. 2002), and are 
likely to gain fitness due to increased genetic 
variability relative to their sympatric conspecif-
ics (Lerner 1954).

Several studies have compared the fitness 
of hybrids and sympatric parental species, but 
fewer have focused on the fitness of parental 
genotypes, in regard to individual genotype and 
amount of recombination. Hotz and Semlitsch 
(2000) compared the fitness of R. lessonae tad-
poles according to their ldh-b genotype, and 
found a better performance of ee as compared 
with bb genotypes in three life-history traits. 
Unfortunately, that study focused only on a 
single allozyme locus for identification of dif-
ferent R. lessonae genotypes, but did not take 
into account genomic introgression. Other fitness 
studies, comparing hybrids and sympatric paren-
tal species (e.g. Neveu 1991, Semlitsch 1993a, 
1993b, 1993c, Hotz et al. 1999, Plénet et al. 
2000, Thurnheer & Reyer 2000, Holenweg Peter 
2002b, Altwegg & Reyer 2003, Anholt 2003) 
have produced contradicting results and do not 
allow conclusion of a general superiority of the 
hybrid genotype.

Table 1. Review of current data on recombination in the western Palearctic waterfrog complex. Nloci = the number of 
analyzed loci in the study, I = relative frequency of foreign alleles, Fgenotype = relative frequency of recombined geno-
types of the whole taxon sample in a study, regardless of the number of loci affected.

Taxon Origin Nloci I (%) Fgenotype (%) Reference

R. kl. esculenta Poland 5 1.2 3.7 Uzzell & Berger 1975
R. lessonae   2.2 4.5
R. ridibunda   7.8 15.6
R. kl. esculenta Eastern Germany 1 – 5.7 Günther & Hähnel 1976
R. lessonae   0.9 1.9
R. ridibunda   9.7 19.4
R. kl. esculenta Eastern Germany 1 3.1 6.2 Günther & Koref-Santibanez 1983
R. lessonae   2.2 4.3
R. ridibunda   4.0 7.9
R. kl. esculenta Eastern Germany 5 3.3 6.5 Plötner & Klinkhardt 1992
R. kl. esculenta Western Germany 7 13.0 82.7 Schröer 1997
R. lessonae   12.5 87.9
R. ridibunda   13.6 85.8
R. kl. esculenta Central France 3 5.8 34.8 Pagano & Schmeller 1999
R. lessonae   2.1 12.5
R. ridibunda Southern France 8 6.2 61 Schmeller 1999
R. kl. grafi   0.6 3.5
R. perezi   2.9 22
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The inconsistent results could, however, 
be the outcome of differential performance of 
parental species due to their genotype and the 
level of adaptation to the current environment, 
as none of the latter studies took the genetics of 
the parental species into account. A preliminary 
study on fluctuating asymmetry (FA) in R. perezi 
and R. ridibunda revealed a trend of lower FA 
of recombined as compared with unrecombined 
genotypes (Wöste 2000), suggesting a higher fit-
ness of at least some of the recombined individu-
als. Hence, future research needs to focus on the 
genotype–environment interactions in waterfrog 
species to reveal a clear image of parental per-
formance in particular. Results are likely to be 
highly interesting, as R. ridibunda and other spe-
cies of the R. ridibunda-species group have been 
repeatedly introduced to various European coun-
tries (Anholt 2003, Pagano et al. 2003, Zeisset & 
Beebee 2003, and sources cited therein).

However, the ability of the R. ridibunda 
genome to initiate hybridogenesis in interspecies 
hybrids varies geographically (Hotz et al. 1985), 
which may account for the low number of for-
eign alleles in R. kl. esculenta from Switzerland 
(< 5%, Vorburger 2001), and the lack of reports 
of recombined genotypes of R. ridibunda and R. 
lessonae in Switzerland. Recombined parental 
genomes, however, may only be introduced in 
the parental gene pool if the hybrid shows hybri-
dogenetic gametogenesis. In the case of sterility 
of hybrid individuals, recombination between 
its two parental genomes is meaningless, as the 
genomes are trapped in the hybrid and cannot 
return to the gene pool of the parental species. 
Hence, regional differences in the ability of the 
R. ridibunda genome to induce hybridogenesis 
will most likely lead to different effects on the 
gene pools of sympatric waterfrog species.

The impact of hybridogenesis on 
the sex ratio

Hybridogenesis may have an impact on the sex 
ratio, if combined with the mating behavior in 
waterfrog assemblages. Generally, it is assumed 
that female choice plays the predominant role in 
waterfrog mating systems (Abt & Reyer 1993, 
Hellriegel & Reyer 2000, Roesli & Reyer 2000). 

However, male choice is not negligible, as males 
prefer to mate with larger females (Blankenhorn 
1974, 1977, Lada et al. 1995). Large females 
produce more eggs and thus contribute more 
to the fitness of the male than do small females 
(Dyson et al. 1992).

Accordingly, in mixed waterfrog assem-
blages large females of R. ridibunda and hybrids 
are likely to experience mating attempts by con-
specific and heterospecific males. In some cases, 
female mating preferences can either be overrun 
by male-male competition (Bergen et al. 1997, 
Engeler & Reyer 2001) or hampered by an over-
lap in courtship-call characters and morphology 
(Lodé 2001). Hybridization would be favored in 
such contexts and thus reinforce the hybridoge-
netic process (Lodé & Pagano 2000).

Cryptic female choice restores female mating 
preferences only incompletely, as females have 
to release some eggs to trick the undesired male 
(Reyer et al. 1999). Therefore, matings leading 
to hybrids usually consist of male PI and female 
PII or H and it can be deduced that in the hybri-
dogen the R. ridibunda genome is most likely 
linked with the X-chromosome, whereas the 
Y-chromosome is linked with the PI genome. As 
the latter genome is preferentially excluded, the 
relative number of X-chromosomes linked to the 
PII genome is increased leading to a skew in the 
sex ratio favoring females. 

Moreover, there is evidence to suggest that 
R. ridibunda propagates from hybrid ¥ hybrid 
crosses and reaches maturity (Hotz et al. 1992, 
Guex et al. 2002), which will further skew the 
sex ratio in favor of female R. ridibunda. Females 
of both R. ridibunda and the hybrid generally 
exceed the number of conspecific males (e.g. 
Berger et al. 1988, Neveu 1991, Holenweg Peter 
2002a), and sex ratio disturbances in waterfrogs 
have been reported to various degrees (Berger 
1971, Rybacki & Berger 2001, Schmeller et al. 
unpubl. data).

In that respect, hybridogenesis functions sim-
ilarly to sex chromosome meiotic drive, and the 
“hybridogenesis-gene” can be thought of as a 
meiotic distorter (see also Joly 2001). Following 
the drive/distorter-hypothesis, R. ridibunda may 
have a greater intrinsic rate of increase and might 
be capable of rebounding faster from population 
declines in the presence of hybridogens (but see 
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Jaenike 2001), due to the increased availability 
of females and multiple matings by males. The 
female bias may also lead to a rapid increase in 
population size in newly colonized habitats and 
might be seen as a new mechanism of species 
replacement (Vorburger & Reyer 2003). It has 
also been argued, however, that strong sex chro-
mosome meiotic drive may lead to the extinction 
of a population, as many females go unmated 
(Hamilton 1967). This is unlikely to be the case 
for R. ridibunda, as sex chromosome meiotic 
drive does not seem to occur in this species 
itself, but only in the hybridogenetic associate 
(Schmeller et al. 2001). For instance, waterfrog 
assemblages in high-oxygen habitats are rarely 
mixed, usually consisting only of R. ridibunda 
(Pagano et al. 2001), supporting the species 
replacement mechanism at least in optimal habi-
tats for R. ridibunda.

Tying the ecology and genetics

The benefits deriving from hybridogenesis seem 
to be primarily directed toward R. ridibunda, and 
due to mating possibilities and fertilization suc-
cess might be especially pronounced in regions 
with mixed populations of two (or more) paren-
tal species and their hybridogenetic associate. 
From the genetic point of view, hybridogenesis 
increases the probability that a recombined R. 
ridibunda hemigenome will re-enter the R. rid-
ibunda gene pool, as the meiotic distorter gener-
ally drives out the PI genome. The probability 
of hemigenome return is further increased by 
the mating behavior of male waterfrogs, prefer-
ring larger females, and overlaps in call struc-
ture and morphology in sympatric waterfrog 
species (Lodé & Pagano 2000), increasing the 
likelihood of hybrid ¥ hybrid crosses or crosses 
between hybrids and R. ridibunda. From an 
ecological point of view, the high availability of 
R. ridibunda gametes in waterfrog assemblages 
could strengthen its colonization success and 
competitiveness (e.g. Vorburger & Reyer 2003). 
Future ecological genetic analyses may assess if 
regional recombination patterns affect the gene 
pools of the parental species, if the increased 
diversity enhances the performance of the paren-
tal species, and how sex ratio disturbance and 

increased genetic diversity interact in parental 
species. 
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