Dance of the Cave Bear: Honouring the Scientific Legacy of Björn Kurtén

Quantitative paleoenvironmental reconstructions based on large mammal communities in Björn Kurtén's work and since then — revising the case of later Late Miocene Old World "*Hipparion* faunas"

Juha Saarinen^{1,*} & Liping Liu²

¹⁾ Department of Geosciences and Geography, P.O. Box 64, FI-00014 University of Helsinki, Finland (*corresponding author's e-mail: juha.saarinen@helsinki.fi)

²⁾ The Swedish Museum of Natural History, Frescativägen 40, SE-114 18 Stockholm, Sweden

Received 14 Feb. 2024, final version received 15 May 2024, accepted 3 June 2024

Saarinen, J. & Liu, L. 2024: Quantitative paleoenvironmental reconstructions based on large mammal communities in Björn Kurtén's work and since then — revising the case of later Late Miocene Old World "*Hipparion* faunas". — *Ann. Zool. Fennici* 61: 179–232.

Functional traits of herbivorous mammals provide tools for reconstructing past environments. In 1952, Björn Kurtén used distribution of ecomorphological features in fossil herbivorous mammal communities from Late Miocene "*Hipparion* faunas" of Eurasia to characterize their paleoenvironments as "steppe", "forest" and "mixed" types. We tested Kurtén's results with a revised set of ecometric methods. We used dental ecometric estimates of mean annual temperature and precipitation, net primary productivity, and normalized difference vegetation index to compare Miocene localities with modern biomes, and dental mesowear to estimate woody and grass cover in the paleoenvironments. Our results agree with Kurtén's, indicating steppe-edge environments in northern China, wooded paleoenvironments in Pikermi, Greece, and central Europe, and open woodland-grassland environment in Maragheh, Iran. Our analyses indicate the presence of wooded grassland savanna in Lothagam and tropical forest in Lukeino in East Africa, further demonstrating paleoenvironmental variation and ecological diversity within later Late Miocene "*Hipparion* faunas".

Introduction

Reconstructing past environmental and climatic conditions across the world enables us to understand how the world worked before the current heavy human impact on our ecosystems. Thus, it provides an essential reference point for understanding the pace and magnitude of human influence on the loss of biodiversity and climate change. In other words, one could even say that

Edited by Henry Pihlström, University of Helsinki

we need to look into the past to understand how the world "should work" if the human factor is removed.

Reconstructing paleoenvironmental and paleoclimatic conditions from adaptive traits of fossil mammals is a two-part process. On the one hand, we need to understand how functional traits have evolved and what their role is. On the other hand, we need to relate functional traits of mammals with environmental conditions, such as climate, primary production, or plant community properties. Here, we discuss Björn Kurtén's use of mammalian ecomorphology in paleoenvironmental reconstruction, and provide an overview of recent methodological developments in paleoenvironmental reconstruction based on mammalian paleoecology and functional traits. We first look into Björn Kurtén's work on paleoenvironmental conditions by quantitative assessment of fossil mammal communities. We then review the methods used to reconstruct paleoenvironments based on properties of fossil large mammal communities. These methods include stable isotope analyses, dental ecometrics, dietary analyses based on dental micro- and mesowear, body size variation and distribution within fossil mammal communities, and postcranial ecomorphology of large herbivorous mammals. Finally, we present a case study where new mesowear and dental ecometric data of large herbivorous mammals from later Late Miocene ("Pikermian", "Turolian" or "Baodean" equivalent) localities are used for testing and revising paleoenvironmental interpretations that Kurtén first suggested in his Master's thesis The Chinese Hipparion fauna (Kurtén 1952).

Björn Kurtén's work on paleoenvironmental reconstruction based on fossil mammals

Björn Kurtén is perhaps best known for his pioneering work on quantitative analyses of life history aspects of fossil mammals such as their demography, but he also studied the relationships of extinct mammals with their environments. A good example of this is his Master's thesis (Kurtén 1952), where he looked into differences in the composition of Late Miocene large mammal faunas from China and argued that there was a boundary zone between forest and steppe environments in the region. In particular, he followed Schlosser's (1903) observation that the presence of two gazelle species differing in their dentition, Gazella gaudryi with brachydont (lowcrowned) dentition and G. dorcadoides with hypsodont (high-crowned) dentition, varied within the region, with "dorcadoides" faunas towards the north-west, "gaudrvi" faunas towards the southeast, and "mixed" faunas in the middle.

At the time when Kurtén wrote his thesis, it was thought that increased hypsodonty in herbivorous mammals is particularly an adaptation to grazing. While this is still understood to be a significant factor, it is now thought that the evolution of hypsodont dentition is typically an adaptation to compensate for the effect of a combination of factors that increase tooth wear rates in dry environments, such as airborne dust and grass phytoliths (Janis & Fortelius 1988, Fortelius et al. 2002, Damuth & Janis 2011). Based on the geographic separation of the two species of gazelle and other species of large herbivorous mammals, Kurtén (1952) revised the idea presented originally by Schlosser (1903) that the north-western areas with "dorcadoides" faunas represent mammal communities that lived in a steppe environment, while "gaudryi" faunas to the south-east were associated with forest environments. The "mixed" faunas in the middle represent a transition zone between the forest and steppe biomes. The age of the Baode fauna was recently determined to represent mammal assemblages of different ages (Kaakinen et al. 2013), indicating a local environment change from humid to dry (Eronen et al. 2014). However, the geographic division of steppe in north-west and forest in south-east has been supported by more recent work (e.g., Fortelius et al. 2002, Liu et al. 2023). Finding such associations between quantified properties of fossil mammal assemblages and their environments, and relating them with geographic patterns of biome distribution in the past was relatively new at the time.

Kurtén used the composition of fossil mammal faunas as an indicator of paleoenvironmental conditions in his book Pleistocene Mammals of Europe (Kurtén 1968). In the context of Villafranchian (latest Pliocene to earliest Pleistocene) of Europe, Kurtén relied on the ecomorphological similarity of the Pleistocene mammal species to their extant counterparts, dividing the species into "wood", "steppe" and "amphibious" types. He then used the proportions of "wood" and "steppe" species in the fossil mammal communities to assess whether the paleoenvironments were dominated by closed forest or open steppe habitats. Kurtén's results mostly agree with more recent interpretations of the paleoenvironments in broad outlines (e.g., Argant 2004,

Barbet 2006, Nomade *et al.* 2014, Strani *et al.* 2018), although we now have stratigraphically more high-resolution records that indicate notable fluctuation within the sections, corresponding with more fine-scale glacial-interglacial cyclicity than was known at the time of publication of Kurtén (1968). For example, the strata at Senèze, France, are now understood to have ranged from ca. 2.2 Ma to ca. 1.9 Ma, recording shifts between more wooded interglacial stages and steppe-dominated glacial stages (Roger *et al.* 2000).

Kurtén's review of the paleoenvironments of the Late Miocene "Hipparion faunas" serves as the basis for our case study. The "Hipparion faunas" (sensu Kurtén 1952) refer to all Late Miocene Old World mammal assemblages, characterized by the widespread presence of hipparionine equids. However, the Chinese "Hipparion faunas" of Kurtén (1952) represent later Late Miocene (Turolian equivalent) assemblages, and we have concentrated on large mammal assemblages of that age in our case study. In addition to the Chinese "Hipparion fauna" localities, Kurtén presented new interpretations of the paleoenvironments of the classic, broadly contemporaneous Greco-Iranian faunas. He writes (1952: 31): "The Pikermi and Western European fauna was characterized by a number of brachydont, browsing types. Among the giraffes, the browsing Giraffa is notable. The gazelles seem mainly to have been brachydont [...] In contrast, Maragha and Samos are dominated by hypsodont types. Chilotherium is a common genus. The giraffids are presented by Palaeotragus, Samotherium, Helladotherium, but the browsing *Giraffa* is absent. Deer are rare. Bovids abound; among the gazelles, hypsodont forms seem to predominate". He then continues: "It is true that Pikermi has been regarded for a long time a typical steppe locality; but this inference seems to rest mainly upon the presence of Hipparion and on the the assumption that this horse was an exclusively plains-living form. The untenability of this hypothesis has been demonstrated above" (ibid.).

In this study, we tested Kurtén's (1952) paleoenvironmental interpretations of the classic Turolian ("Pikermian") "*Hipparion* fauna" localities based on new mammalian ecometric

and paleoecological analyses. In addition, we included well-sampled Turolian and Turolian equivalent localities from central Europe and East Africa in order to broaden the geographic range of the analyses. Thus, we could explore whether the mammalian ecometrics capture paleoenvironmental differences in widely separate parts of the Old World, from central Europe in the west to China in the east, and from the tropics in East Africa to the temperate zones in Europe and northern China.

Large mammal-based paleoenvironmental analysis methods since Kurtén

Stable isotope analyses

Several methods for analyzing the connections between fossil large mammals and their environments have been developed since Kurtén's work on the topic (e.g., Kurtén 1952, 1968). Among the most significant early developments was the use of stable isotope analyses (Lee-Thorp & van der Merwe 1987, Cerling *et al.* 1997), especially in dental enamel, which preserves the isotopic signal during the mineralization of the teeth and is more resistant to diagenetic alteration in the isotope signal than other bone tissues. The use of stable isotope analyses in research on mammalian paleoecology and paleoenvironments is based on understanding of the fractionation of isotopes in biological tissues.

Stable oxygen isotope ratios $(^{16}O/^{18}O)$ in the enamel of fossil mammal teeth are fractionated following processes of rainwater re-evaporation and source of drinking water in the environment. Evaporation, which is high in arid environments, is reflected in the stable isotope signal as increased heavy oxygen values (δ^{18} O). On the other hand, herbivorous mammals that receive their water mostly from the vegetation they feed on (typically browsers) also show increased δ^{18} O, compared with mammals that mostly drink meteoric water. Thus, differences in oxygen isotope ratio within the herbivorous mammal community reflect ecological differences between the species (Pedarzani & Britton 2019). There are differences in the sensitivity of different

mammal species to evaporation effect on the heavy oxygen isotope (δ^{18} O). For example, Elephantidae, Rhinocerotidae and Hippopotamidae are evaporation-insensitive and their oxygen isotope ratios reflect the isotope ratio of the original source water, whereas the oxygen isotope ratios of evaporation-sensitive mammals such as Giraffidae, Tragelaphini and Hippotragini reflect the isotope ratio of evaporated water (Levin *et al.* 2006, Blumenthal *et al.* 2017). Comparison of δ^{18} O between evaporation-insensitive and evaporation-sensitive mammals is used as an aridity index (Levin *et al.* 2006, Blumenthal *et al.* 2017).

Stable carbon isotope ratios (¹²C/¹³C) are widely used in dietary analyses of large herbivorous mammals, as they reflect the proportion of C3, C4 and CAM photosynthesizing plants in their diet (Cerling et al. 1997, 1999, Cerling & Harris 1999, Uno et al. 2011). Compared to C3 photosynthesis, C4 and CAM photosynthesis results in an increase in δ^{13} C values in plant tissues, and these ratios are transferred into dental enamel and other tissues of herbivorous mammals due to further fractionation processes. On a smaller scale, stable carbon isotope ratios also show a "canopy effect", with more negative δ^{13} C values in closed-canopy environments, and can be used as an indicator of vegetation openness especially outside the range of C4 photosynthesizing plants (Farquhar et al. 1989, van der Merwe & Medina 1991). Stable carbon isotope ratios, both from dental enamel of large herbivorous mammals and from soil carbonates, have been used in paleoenvironmental analyses, especially to track the spread of C4 grasses and grasslands during the Cenozoic (Cerling et al. 1997, 1999, Cerling & Harris 1999, Kingston & Harrison 2007, Kingston 2011, Uno et al. 2011, Manthi et al. 2020). The spread of C4 grasses has been much discussed for Africa during the Neogene, often in the context of paleoenvironments associated with hominids and early hominines. Changes in the partial pressure of carbon dioxide in the atmosphere through time have also affected carbon isotope ratios, being another factor to be considered when applying stable carbon isotope analyses in the reconstruction of past herbivore diets and vegetation (Hare et al. 2018, Polissar et al. 2019).

Stable carbon isotopes were used by Passey et al. (2007) to explore the paleoecological patterns of the Chinese "Hipparion faunas" suggested by Kurtén (1952). Passey et al. (2007) analyzed stable carbon isotope ratios from the species of Gazella from the Late Miocene localities of northern China, and found support for Kurtén's (1952) interpretations of their dietary ecology. Their analyses indicated that while the plant communities were C3-dominated, the hypsodont gazelles of the species Gazella dorcadoides consumed ca. 20% C4-photosynthesizing vegetation, while the brachydont G. gaudryi and the medium-crowned (mesodont) G. paotehensis had a purely C3 plant diet. This supports Kurtén's interpretation of a more grazing dietary ecology of G. dorcadoides compared with that of the two other species of Gazella, as the C4 plants are likely to represent grasses, although this method does not exclude possible consumption of C3 photosynthesizing grasses.

Other stable isotope methods applied to mammalian paleoecological research include analyses of stable nitrogen isotopes, which reflect protein consumption as well as properties of different plants consumed (DeNiro & Epstein 1981, Bocherens 2003, 2015), and strontium isotopes which can reveal migration patterns of large mammals in the past (e.g., Arppe *et al.* 2009, Metcalfe & Longstaffe 2014, Hoppe & Koch 2017, Metcalfe 2017).

Dental ecometrics of large herbivorous mammals and their use in reconstructing past environmental conditions

The basic principles for understanding the relationship of functional adaptations of mammals and their environments in the past started to form long before Kurtén's work. In fact, the use of functional morphology to estimate ecological roles of extinct species goes back in time to the very beginnings of paleontology, with Georges Cuvier's concept of comparative anatomy, whereby the functional anatomy of extinct species could be understood by comparison with the anatomy of extant species that have similar functional traits (Cuvier 1804, Cuvier *et al.* 1834). Cuvier also made some of the earliest remarks on climatic associations of fossil mammals. He noted similarities between the Eocene *Palaeotherium* from the Paris Basin and modern tapirs that are associated with tropical forests, and based on this he argued that climate in France must have been warmer in the distant past (Cuvier 1804). Another example of early ideas about the association of fossil mammals and climate is Edouard Lartet's observations of the fossil assemblage of mammals from Sansan, France (now understood to be Middle Miocene in age). It seemed to include species that have living analogues today both in hotter and colder climates, but mostly in the temperate climate zone similar to that region today (Lartet 1851).

Paleontological discoveries later in the 19th century laid the foundation for understanding long-term evolution of functional traits of mammals and other organisms. For example, the discovery of evolutionary series of horses (Equidae) in the Cenozoic record in North America revealed an evolutionary trend through time. Several equid genera adapted to increasingly open environments by evolving increasingly running-adapted limbs for efficient movement in open landscape, and increasingly high-crowned dentition with more complex enamel patterns for feeding on tough open-habitat grasses (Marsh 1879, Matthew 1903, Simpson 1951). This classic evolutionary scenario has more recently been revised, revealing a more complex pattern of evolution within several branching lineages, although the basic trend still broadly holds for the big picture of horse evolution (e.g., Cantalapiedra et al. 2017, Janis & Bernor 2019, Cirilli et al. 2022).

The mammal community structure analysis of Kurtén (1952) brought paleontology closer to modern ecology by providing a quantitative analysis of the distribution of ecomorphological properties within primary consumer communities (fossil herbivorous mammal assemblages) to estimate properties of primary producer communities in the past (categorization of "steppe" *vs.* "forest" environments). Kurtén based his ecological characterization of the herbivorous mammals as "steppe"- and "forest"-adapted species mainly on one key trait, tooth crown height (hypsodonty), which at the time was mostly understood to be an adaptation to feeding on tough grasses in open grassland environments (e.g., Matthew 1903, Simpson, 1944, 1951). Since then, several authors have conceptualized the role of hypsodonty as an adaptive trait to increase functional durability of teeth under conditions that increase tooth wear rate, including grass phytoliths and exogenous mineral particles present in the environment where the animals feed (e.g., Fortelius 1985, Janis & Fortelius 1988, Fortelius *et al.* 2002, Strömberg 2003, 2006, Damuth and Janis 2011, Kaiser *et al.* 2013, Strömberg *et al.* 2013, Madden 2015, Saarinen & Lister 2023).

From this background of understanding the functional role of dental adaptations, such as hypsodonty, in large herbivorous mammals, a methodological framework called "dental ecometrics" has been developed, largely at the University of Helsinki during the last two decades. Ecometrics refers to functional traits of mammals (or other organisms) that are, on the one hand, "taxon-independent". In other words, they are shared as a common adaptive response across wide taxonomic groups, and hence are not limited by phylogenetic position of the individual species, although relying on adaptations of species that are shared with a wide range of other species and have a similar functional relationship with the environment. On the other hand, these functional traits have a direct quantifiable relationship with properties of their environment, such as climate and vegetation, and thus when averaged at community-level give a quantitative estimate of such properties (Eronen et al. 2010a, Polly et al. 2011, Polly & Head 2015, Vermillion et al. 2018). Hypsodonty can be considered the first dental ecometric trait to be used as a quantitative proxy of mean annual precipitation in terrestrial environments (Fortelius et al. 2002). The selection pressure for hypsodont dentition in large herbivorous mammals is driven by a set of factors that cause increased tooth wear rates and are increasingly present in progressively dryer environments. Such factors include phytolith-rich grasses and the accumulation of aeolian mineral dust on plants in dry environments. Thus, when hypsodonty is averaged across the community of herbivorous mammal species, it can be used for estimating mean annual precipitation in terrestrial environments (Fortelius et al. 2002). Fortelius et al. (2002) introduced

the use of ordinated hypsodonty values, where species with brachydont (low-crowned) molars are given value 1, mesodont (medium-crowned) species are given value 2 and hypsodont (highcrowned) species are given value 3. When these ordinated hypsodonty values are averaged across the large herbivorous mammal communities to calculate mean ordinated hypsodonty for fossil localities or modern ecosystems, they can be used to estimate mean annual precipitation. This has become the standard procedure in the use of hypsodonty as a dental ecometric trait, and hypsodonty has been demonstrated to reflect precipitation with a high accuracy in present environments in most parts of the world (Eronen et al. 2010a, Liu et al. 2012).

Further dental ecometric traits (of large mammal species, averaged over communities) have been used since the original method of using mean ordinated hypsodonty (HYP) of large mammal communities as a proxy of precipitation. These are all functional traits that are related to either durability or cutting, grinding and shearing properties of molar teeth, and their distribution within communities of herbivorous mammals reflects various aspects of the environment via an adaptive link of dental morphology and the vegetation the mammals consume. They are as follows:

- 1. Longitudinal loph count (LOP). This is the amount of elongate cutting or shearing ridges on the occlusal surface of the molars, with a primary orientation parallel to the main axis of the tooth row (Liu et al. 2012). This trait is related to the functional ability of teeth to cut tough plant parts such as branches, and high proportion of LOP is associated with seasonally cool environments where plants drop their leaves during cold seasons. Thus it broadly correlates with mean annual temperature (Liu et al. 2012, Oksanen et al. 2019). Together with mean ordinated hypsodonty, this trait can be used to estimate net primary productivity (NPP) and approximate biome boundaries in terrestrial environments (Liu et al. 2012).
- 2. Presence (1) or absence (0) of acute lophs (AL). Acute lophs are elongate ridges (spanning more than half the length or width of the

tooth crown) that maintain a sharp, cutting edge when worn. We use here the original definition where any sharp-edged lophs with clear facet development are counted as acute, as opposed to obtuse lophs, which are basinlike when worn, with rounded enamel edges (Žliobaitė et al. 2016, 2018, Oksanen et al. 2019, Saarinen et al. 2021a). The functional role of acute lophs is somewhat similar to the longitudinal lophs, with a stronger emphasis on the cutting function needed for breaking tough browse items such as branches. High proportions of acute lophs in large mammal communities have been associated with low mean annual temperatures, as they are a common functional response to browsing on deciduous woody plants (Oksanen et al. 2019, Saarinen et al. 2021a). Presence of acute lophs has also been used as a covariate in estimating normalized difference vegetation index (NDVI, a measure of green vegetation in terrestrial environments), with which it has a positive relationship based on training data from Kenyan national parks (Žliobaitė et al. 2016).

- 3. Presence (1) or absence (0) of obtuse lophs (OL). Obtuse lophs maintain basin-like profile without sharp enamel edges or facets when worn. A high proportion of obtuse lophs within large herbivorous mammal communities indicates prevalence of shearing (rather than cutting) function in feeding, and it has a negative relationship with precipitation and NDVI, but a positive relationship with temperature in models based on training data from Kenyan national parks (Žliobaitė *et al.* 2016).
- 4. Presence (1) or absence (0) of structural fortification (SF). Structural fortification refers to structures of molar teeth (usually thickened enamel edges in parts of the occlusal surface) that support the maintaining of relief in the cusps on the occlusal surface in worn molar teeth (Žliobaitė *et al.* 2016, 2018, Oksanen *et al.* 2019, Saarinen *et al.* 2021a). The most typical example of this is thickening of the lingual enamel wall of buccal cusps in the selenodont molars of ruminants, which makes the buccal cusps stand high compared to other surface features in worn molars, although "furchen" (furrowing of enamel) in

bunodont molars was also counted as fortification according to the original definition. This trait is characteristic of mixed-feeders that feed on grasses, fruit and browse in tropical forest understory, forest edge ecotones and wetlands (Žliobaitė *et al.* 2016, 2018, Saarinen *et al.* 2021a). This trait has been mostly used in the context of sub-Saharan Africa, where it correlates positively with precipitation, NPP and NDVI, and negatively with temperature (Žliobaitė *et al.* 2016), and high proportion of species with SF separates evergreen forests from grasslands in Africa (Žliobaitė *et al.* 2018).

- 5. Flat (1) or non-flat (0) occlusal topography (OT). Flat occlusal surface is a condition where worn molars maintain an occlusal surface shape that, parallel to main chewing direction, practically has no other topography than somewhat elevated enamel ridges (enamel being harder than other dental tissues). Flat occlusal surface is a special adaptation of grazers, indicating occlusion that is heavily dominated by horizontal shearing function. Because of its association with specialized open-habitat grazers, a high proportion of flat occlusal surfaces is related to open, dry environments and relatively low NPP and NDVI. In models based on training data from Kenyan national parks, OT is positively related to temperature and negatively related to precipitation, NPP, and NDVI (Žliobaitė et al. 2016).
- 6. Presence (1) or absence (0) of coronal cement (CM). This trait is related to maintaining structural integrity of molars that have complex, folded, narrow and/or high loph structures, and it is often (but not always) associated with flat occlusal surfaces. The ecometric use of this trait has been limited, perhaps because it is a secondary trait for maintaining functional integrity rather than having a more direct functional role in feeding. Nonetheless, Žliobaitė *et al.* (2016) found a negative relationship of this trait with precipitation and NPP.
- Horizodonty (HOD), with categories 1 (two cusp rows), 2 (three cusp rows) and 3 (more than 3 cusp rows). This trait is an alternative way to increase the durability and/or functional efficiency of molars by multiply-

ing the amount of transverse cusp pairs or lophs on the tooth surface beyond the usual two of most large herbivorous mammals. Ecometric use of this trait has been limited, although it shows a positive relationship with precipitation in East African models (Žliobaitė et al. 2016). However, this pattern may be related to the presence of bunodonty, as most horizodont species today are bunodont suids. Increased horizodonty is taxonomically limited, occurring almost exclusively among suids and proboscideans. In proboscideans, horizodonty was a key dental specialization to increase shearing efficiency and functional durability, and it evolved as an evolutionary response primarily to climatic aridification and to some degree to grazing, especially during the last 10 million years among Elephantidae (Cantalapiedra et al. 2021, Saarinen & Lister 2023).

- Presence (1) or absence (0) of bunodonty 8. (BUN). Bunodont molars lack lophs (elongate cutting or shearing ridges) and are typical for omnivorous and frugivorous large mammals that mostly feed in forest environments; however, some highly specialized grazing ungulates such as warthogs have retained bunodont molar morphology (although in a highly modified, multi-cusped and high-crowned form). A high proportion of bundont species in large herbivorous mammal communities is associated with warm (low-seasonality) environments (e.g., Saarinen et al. 2021a, Liu et al. 2023), and recent ecometric models show an association of high bunodonty values with the climatically warm southern part of Asia today (Liu et al. 2023).
- 9. Presence (1) or absence (0) of plain selenodonty (PS) (Saarinen *et al.* 2021a), or molars with exclusively obtuse lophs (OO) (Liu *et al.* 2023). This trait is typical of selenodont ungulates adapted to seasonally harsh (dry or cool) environments (Saarinen *et al.* 2021a), sometimes informally called "goat"-type dentition (Liu *et al.* 2023). In Asia, the cool and dry northern part of the continent (north of Tibetan Plateau) is typified by high proportion of OO as compared to the warm and more humid southern part (Liu *et al.* 2023).

Dental ecometric analyses are a powerful tool for reconstructing climatic properties, primary production and biome distribution in terrestrial paleoenvironments. Development of the global fossil mammal database, the NOW Database of fossil mammals (https://doi.org/10.5281/ zenodo.4268068, Žliobaite et al. 2023) maintained by the University of Helsinki, has enabled geographically large-scale, temporally extensive ecometric analyses to be performed (Casanovas-Vilar et al. 2023). Examples include the use of hypsodonty to track changes in precipitation across Eurasia (Fortelius et al. 2002, 2006, Eronen et al. 2010b) and in the Turkana Basin, East Africa (Fortelius et al. 2016) during the Neogene; the discovery of biome shifts in Eurasia from the Middle to Late Miocene (Liu et al. 2012); differential patterns of aridification of North American and Eurasian continents during the Cenozoic (Eronen et al. 2012, 2015); and changes in early human environments when humans dispersed outside Africa during the Early Pleistocene (Oksanen et al. 2019, Saarinen et al. 2021a). The most typical use of dental ecometrics has been to retrodict climatic properties (precipitation and temperature) and primary productivity (which relates to broad patterns of biome distribution) based on training data from modern ecosystems. However, other properties of paleoenvironments such as more fine-scale differences between vegetation type in past environments have also been explored (Žliobaitė et al. 2018, Saarinen et al. 2021a).

While dental ecometric modeling has mostly been based on multiple regression models, new data analysis methods such as redescription mining have brought new approaches to dental ecometric analyses (Galbrun et al. 2018, Liu et al. 2023). The current dental ecometric models are mostly based on modern training data from present-day ecosystems in Eurasia and Africa, which may limit their use in non-analogue cases, especially the further back in time they are applied. For example, the most commonly used dental ecometric trait, hypsodonty, evolved in most herbivorous mammal lineages during the Miocene, so its use in ecometric estimates in more distant times than the Miocene is not possible. Furthermore, hypsodont dentitions never evolved in endemic Australian large herbivorous

mammals, while South American large mammal faunas show particularly high hypsodonty values during most of the Cenozoic, possibly driven by high levels of volcanic ash deposition (Strömberg *et al.* 2013). Such non-analogue cases call for continent-specific models as well as models based on direct proxy comparisons for deep-time paleoenvironmental reconstructions based on dental ecometrics (*see* Wilson & Saarinen 2024).

Dental wear analyses and their paleoenvironmental implications

Dental wear analyses (mesowear and microwear) are a versatile tool for analyzing dietary composition of fossil herbivorous mammals at the level of local populations. They record a more direct response of herbivorous mammals to their environment (via the connection of available vegetation) in the past than the dental functional traits that reflect evolutionary adaptations of species to feeding in different environmental conditions. Thus, dental wear signal from herbivorous mammal assemblages has a high potential for reconstructing vegetation structure in terrestrial paleoenvironments.

Microwear analysis is the first proxy method for reconstructing diets of fossil mammals based on tooth wear (Walker et al. 1978). It is based on counting the abundance of microscopic wear marks, such as scratches and pits on tooth enamel caused by chewing on different dietary items. The hypothesis behind this method is that abrasive plant materials, such as grass phytoliths, cause long scratches on the worn enamel facets of the teeth, whereas browsing causes a more pit-dominated microwear pattern. The benefit of this method is that it is applicable to virtually all kinds of teeth and it should give consistent results for mammals with very different tooth morphologies. However, microwear analysis only reveals the last few meals of the animal instead of a long-term average dietary signal (e.g., Rivals et al. 2010). Furthermore, it has been suggested that other factors than diet, such as external soil material from the environment, may obscure the dietary signal provided by microwear analysis (Rivals et al. 2010). On the other hand, microwear can detect dietary

details which other proxy methods do not pick up. For example, characteristic large-sized pits in microwear can reveal feeding on hard seeds (Rivals *et al.* 2012). Ungar *et al.* (2003) developed a new method called dental microwear texture analysis, for analyzing microwear surface textures by combining confocal microscopy with scale-sensitive fractal analysis (Scott *et al.* 2005). Such methodological improvements have made dietary analyses based on microscopic tooth wear patterns more objective compared to the original method based on visual counting of scratches and pits under a microscope.

The use of microwear analyses as paleoenvironmental proxy has been limited, probably largely due to the comparatively laborious data collecting procedure, which may limit community-wide analyses. Another challenge is the lack of extensive dental samples across herbivorous mammal communities associated with present environments, which means that models for estimating environmental variables from community-wide microwear signals based on modern mammal communities are practically lacking. Nonetheless, some studies have linked dental microwear patterns from fossil mammal populations with their paleoenvironments. For example, Rivals et al. (2015) showed that the dietary signal both from southern mammoth (Mammuthus meridionalis) and the last European gomphothere Anancus arvernensis from Early Pleistocene European localities varied in a way that reflects feeding in different environments, with more grass-dominated microwear signals associated with cool-stage "steppe" localities. Community-wide microwear analyses (usually in combination with mesowear, see below) have occasionally also been performed and used as paleoenvironmental indicators, such as in the case of Pleistocene localities from the UK (Rivals & Lister 2016), and Late Miocene of Rudabánya, Hungary (Merceron et al. 2007), and Nikiti, Greece (Merceron et al. 2016a).

Dental mesowear analysis (Fortelius & Solounias 2000, Mihlbachler *et al.* 2011, Solounias *et al.* 2014, Saarinen *et al.* 2015; for a recent review, *see* Ackermans 2020) is a promising ecometric method for estimating vegetation structure in past terrestrial environments. As a fast and inexpensive method it

allows large amounts of dietary data from a wide range of fossil mammals to be obtained, and it provides a robust signal of lifetime dietary composition in the browsing-grazing (or attrition-dominated-abrasion-dominated) spectrum. Mesowear reflects the abrasiveness of plant foods consumed by herbivorous mammals, and it is based on observing the macroscopic wear-induced shape of the occlusal surface of herbivorous mammals' molar teeth. The basic principle is simple: progressively more abrasive diet makes tooth cusps increasingly lower in relief and increasingly rounded or blunted, with heavy-abrasion diets causing low relief and blunt cusps. The abrasion, as captured by mesowear, mostly comes from feeding on grasses and possibly other phytolith-rich monocots (Fortelius & Solounias 2000, Kaiser et al. 2013, Merceron et al. 2016b). It has been suggested that abrasive exogenous mineral particles, such as aeolian dust in dry environments, have an additional effect. However, several studies have indicated that although exogenous particles accelerate overall tooth wear rate, such particles do not have a major effect on the mesowear signal, which is mostly affected by the amount of grass in diet (e.g., Kaiser et al. 2013, Kubo & Yamada 2014, Merceron et al. 2016b, Saarinen & Lister 2016, 2023). This is probably due to a difference in particle size (larger in phytoliths than in mineral dust), or a "sandpaper effect", where grass phytoliths grind down the surface features of teeth because they are firmly attached in the tough leaves, whereas mineral dust can move freely between the teeth.

The original mesowear method introduced by Fortelius and Solounias (2000) is based on visual observation of the relief and shape of cusps in selenodont, ectolophodont and plagiolophodont ungulate molars (found today in ruminants, camels, horses, rhinoceroses and hyracoids), where a continuous buccal edge ("ectoloph") enables consistent observation of the effect of wear on cusp shape. Fortelius and Solounias (2000) coded the relief of the cusps as high or low (with thresholds between high and low relief for different ungulate groups based on observations from modern ungulates with known diets), and the cusp shape as sharp, rounded, or blunt. Mesowear signal dominated by high relief and sharp cusps indicates attrition-dominated wear and browsing diet, whereas mesowear dominated by low relief and blunt cusps indicates abrasive diet (grazing). Intermediate categories (from predominantly high relief and rounded cusps to predominantly low and rounded) represent a dietary spectrum towards increasing abrasiveness (from browse-dominated to increasingly grass-dominated mixed diets). However, this is a simplification, and in reality, cusp shape and relief can vary separately: low relief can be associated with sharp cusps (resulting from high-pressure but low-abrasion chewing on dietary items such as tough, dry browse). Even a combination of high relief cusps that are blunt at the tip is possible, and can occur in fresh grass grazers such as bovines.

The bivariate mesowear scores of cusp shape and relief can be averaged for extant ungulate species and compared using hierarchical clustering analyses, which demonstrate that mesowear accurately detects dietary differences on a browse-graze continuum in most extant large herbivorous mammal species (Fortelius & Solounias 2000). Several revisions of the original mesowear method have been made to improve its accuracy in dietary analysis, to transform the mesowear relief and shape scores into a single univariate mesowear score for analytical purposes, or to expand the mesowear method beyond the originally limited group of dental morphologies. Mihlbachler et al. (2011) used a "mesowear ruler" approach where they use a spectrum of mesowear scores based on combinations of cusp relief and shape changing progressively from high relief and sharp cusp(0)to completely flat, blunt cusp (6). Similar univariate mesowear scores, derived from a combination of cusp shape and relief, have been used by other authors, such as the simplified scores of Rivals and Semprebon (2006) and Rivals et al. (2009) on a scale from 1 (high and sharp) to 3 (low and blunt), and Fraser et al. (2014) on a scale from 1 (high and sharp) to 5 (low and blunt). While these scoring methods are mostly adequate in representing a spectrum of increasing dietary abrasiveness, they are based on an assumption that progressively changing cusp shape due to abrasion is related to progressively lower reliefs, which is not always the case, as discussed above. Thus, Saarinen et al. (2016)

introduced an alternative method of calculating a univariate mesowear score on a scale from 1 to 3 as an average of ordinated values of cusp shape (1 = sharp, 2 = rounded, 3 = blunt) and relief (1 = high, 3 = low).

The "traditional" mesowear methods (mesowear 1 and 2, sensu Ackermans (2020)) based on observation of cusp relief and shape have been expanded to cover additional mammal groups, including South American endemic ungulates (Croft & Weinstein 2008), rodents (Ulbricht et al. 2015, Kropacheva et al. 2017), lagomorphs (Fraser & Theodor 2010), and marsupials (Butler et al. 2014). However, such methods are not applicable to dental morphologies that do not have separate cusp apices for which the worn shape could be observed, such as the lamellar molars of elephants. As a solution, Saarinen et al. (2015) introduced a method called mesowear angle analyses, which is based on measuring the relief of enamel ridges on a worn occlusal surface of molars as angles measured from the bottom of dentine valleys between the enamel ridges. This method quantifies the amount of abrasion from diet (mainly from feeding on grasses) on the enamel ridges. An increasing amount of abrasive plants in diet has the strongest effect on the top of the enamel ridges on the tooth surface, bringing the relief of the enamel ridges lower in relation to the bottom of the softer dentine valleys between the enamel ridges.

For species with dominant facet development rather than development of basin-like dentine valleys at medium-levels of tooth wear, mesowear angles can alternatively be calculated from slopes of the primary wear facets, and they have been shown to broadly correspond with mesowear angles measured from dentine valleys in deinotheres and other proboscideans (Saarinen & Lister 2023). Mesowear angles have been shown to correlate with stable carbon isotope values in low-latitude proboscidean populations (Saarinen et al. 2015) and microwear in several proboscidean paleopopulations (unpublished data), demonstrating that they quantitatively reflect dietary composition in a continuum from browsing to grazing. Moreover, mesowear angles of elephantoid proboscideans have been shown to correlate with the proportion of grass in local environments, rather than with other environmental elements such as aridity and openness, as demonstrated by comparisons of paleobotanical and paleoclimatic records and proboscidean mesowear (Saarinen & Lister 2016, 2023). As very large, ecologically versatile megaherbivores, proboscideans (except for the exclusively browsing deinotheres) tend to be non-selective feeders, which probably explains why their dietary signal tracks local vegetation composition particularly well. The association between elephant dietary composition and vegetation structure has been confirmed for extant African and Asian savanna and forest elephant populations (Cerling et al. 1999, Xafis et al. 2020, Saarinen & Lister 2023). Thus, proboscidean mesowear patterns alone can be used as an ecometric variable to estimate grass cover (or proportion of grass from total vegetation) in past environments (Saarinen & Lister 2016, 2023). The mesowear angle method has also been applied to xenarthrans (Saarinen & Karme 2017) and facet angles of the lower molars to rhinoceroses (Hernesniemi et al. 2011). The benefit of mesowear angle analysis compared to other mesowear analyses is that it is less constrained by differences in primary morphology of the molars, and may work as a basis for universally comparable mesowear analysis, regardless of differences in tooth morphology.

Integrating evidence from paleobotanical analyses and mesowear analyses from fossil mammal assemblages indicates that mesowear can be used as an ecometric method to estimate vegetation structure in past environments. Saarinen et al. (2016) found a correlation between non-arboreal pollen percentages (proxy of vegetation openness) and averaged ungulate mesowear scores from Middle and Late Pleistocene localities from central and north-western Europe. Merceron et al. (2007) performed dental mesowear and microwear analyses of fossil herbivorous mammals from the Late Miocene locality of Rudabánya, Hungary, and noted that the characteristic browse-dominated dietary spectrum is consistent with closed-canopy forest environment. Belmaker and O'Brien (2018) noted a correlation between ungulate mesowear scores and proportion of grass in vegetation (grass%) of environments, while a more robust

correlation was found between proboscidean mesowear angles and grass percentage for the Pleistocene of Britain (Saarinen & Lister 2016) and the Neogene of East Africa (Saarinen & Lister 2023). Ungulate mesowear patterns have revealed (in concert with other paleoecological evidence) that the paleoenvironments in the earliest sites occupied by humans outside Africa, such as Dmanisi in Georgia, Ubeidiya in Israel, and Orce in Spain, were different from East African savanna environments. For example, they were less dominated by grassy undergrowth (Belmaker & O'Brien 2018, Saarinen et al. 2021a, Bakhia 2023). These patterns make sense from an ecological perspective, as mesowear reflects the proportion of grass in the diet. While differences in dietary adaptations can obscure the use of the dietary signals of single taxa as a proxy of vegetation properties, when averaged across large herbivorous mammal communities, or concentrating on non-selective and ecologically versatile megaherbivores such as proboscideans, mesowear analyses provide a robust signal of local vegetation (especially proportion of grasses from total available vegetation). Thus, while the mesowear signal of large mammal communities and megaherbivores has been shown to correlate with general vegetation openness (and conversely, cover of woody vegetation) (Saarinen et al. 2016, Saarinen & Lister 2016), it is primarily a proxy of grass cover (Saarinen & Lister 2016, 2023).

Mammalian body size as a paleoenvironmental and paleoclimatic indicator

Body size is a trait that is connected with most aspects of the physiology, ecology and environmental adaptations of mammals and organisms in general. Thus, understanding the relationships between mammalian body size and their environments can be used in paleoenvironmental reconstruction, although complexity of the factors affecting body size has to be taken into account. Metabolic rates of mammals follow an approximately 3/4 positive allometry, which means that while larger mammals have higher energetic needs, they need less energy per unit of their mass, following an approximately 1/4 negative allometry (Hemmingsen 1960, West *et al.* 1997, 2002). For this reason, larger size increases fasting endurance (Lindstedt & Boyce 1985), while large body volume (or mass) in relation to body surface reduces loss of water from the body (Peters 1983). Consequently, increasing body size is beneficial for large mammals (species with a body mass of more than 10 kg) in seasonally harsh (cold or dry) environments, where large size helps survive through seasonal shortage of resources, and/or to migrate more efficiently in search of resources (Peters 1983).

On the other hand, high primary production and low plant defense mechanisms during growing season may enable mammals to attain large size in seasonally harsh climatic conditions (see Saarinen 2014 and references therein). Thus, "Bergmann's rule" (Bergmann 1847), which states that mammalian body sizes are larger under colder climatic conditions because of benefits for heat conservation, is in fact more likely explained by seasonally harsh climatic conditions with fluctuations between scarcity of resources and periodic abundance of high-quality resources (Geist 1987, McNab 2010). Ultimately, most patterns of inter- and intraspecific body size variation in large mammals are related to resource availability and quality, a phenomenon dubbed "the resource rule" (McNab 2010, Saarinen 2014). However, growing large in harsh environments is not the only possible survival strategy. Several species of small mammals (< 1 kg body mass) are able to avoid exposure to seasonally harsh conditions by burrowing and hibernating. Alroy (1998) demonstrated a macroecological pattern in mammalian evolution, where small mammals (< 1 kg body mass) remained diverse throughout the Cenozoic, while large mammals (> 10 kg body mass) on average increased in body size. Medium-sized mammals (between 1 and 10 kg in body mass) in turn became less diverse, creating a "body size gap" in the mid-size range. Alroy (1998) related this phenomenon to the climatic cooling and harshening during the Cenozoic, as small mammals could survive due to sleep-or-hide (SLOH) strategies, such as burrowing and hibernating, and several large mammal lineages adapted by evolving larger sizes, while middle-sized mammals suffered most from the changing conditions.

Body size distributions within mammalian communities were first used as an environmental indicator by Legendre (1986), who introduced a method called cenogram analysis. Cenograms are diagrams that show all mammal species, apart from carnivores, ranked by their body size on the x-axis, and their body masses on the y-axis. Originally, the cenogram analysis was based on observations of the shape of mammalian body size distribution, with continuous distribution from small to large species indicating humid and closed environments, an abrupt steepening of the slope of the body size distribution in the large-sized end of the spectrum (few large-sized species) indicating arid environments, and a gap in medium-sized species (between 500 and 8000 g) indicating open environments (Legendre 1986). Cenogram analyses have been used in paleoenvironmental reconstructions, for example to argue for an environmental change in Europe during the Oligocene, where conditions in southern Europe changed from humid and forested in the Eocene to more open and dryer in the Oligocene, reversing back to more humid and closed during the Early Miocene (Escarguel et al. 2008). While the cenogram analysis in its original form is based on qualitative observation of the shape of the body size distribution, more quantitative statistical analyses of mammalian body size distributions and their use as an ecometric method to calculate quantitative estimates of climate and properties of plant communities in paleoenvironments have been developed. Alroy (2000) used statistics such as skewness and curtosis for analyses of mammalian body size distributions. Recently, Wilson and Parker (2023) applied a generalized linear latent variable model-based analysis of body size distribution and dietary guild structure of mammal communities in South America for estimating climatic variables (temperature and precipitation), NPP and tree cover. They used this model to retrodict the environmental conditions in the Middle Miocene fossil locality of La Venta from Colombia, South America, with promising results.

Besides body size distributions within communities, body size variation within mammal lineages and species can also be informative of environmental conditions. Smith *et al.* (2010) noted that maximum body size of terrestrial mammals increased exponentially during the Early Cenozoic, following the extinction of non-avian dinosaurs, but levelled off since the Middle Eocene and started following fluctuations in global climate, with peaks of larger maximum size corresponding with events of global cooling during the Oligocene, the Late Miocene and the Pleistocene. Saarinen et al. (2014) discovered that maximum body size frequency (the proportion of terrestrial mammal orders reaching their largest body size) was related to cooling events, with a particularly high maximum size frequency during the Pleistocene ice ages. Huang et al. (2023) noted a similar pattern for proboscideans, where their body size followed the global oxygen isotope curve both in Eurasia and Africa during the Neogene, with increase in mean and maximum size during periods of cooling (e.g., Late Miocene and Pleistocene), and smallest mean and maximum sizes occurred during the particularly warm Middle Miocene climatic optimum. While these studies show a relationship of body size with global climate change within large taxonomic groups of mammals, an interpretation of a simple effect of cooling on increase in body size of mammals should be avoided. The global cooling has had different effects in different parts of the world, causing cooling in high latitudes, drying in mid-latitudes and increased seasonality in most parts of the world. Global climate change had a drastically different effect on environments in Europe and North America during the Neogene, with dry, open habitats becoming more prominent earlier during the Miocene in North America, and this is reflected in differential patterns of ungulate (artiodactyl and perissodactyl) body size changes on those continents (Huang et al. 2022). These observations have led to the interpretation that increased average body size in large mammal groups is typically associated with increased seasonality and "harshness" of climate, which have affected mammal body size through connections with resource availability and quality, rather than decreasing temperature as such (Saarinen 2014, Huang et al. 2023).

Saarinen *et al.* (2016) noted that intraspecific body size variation of several Pleistocene European ungulate species was associated with habitat openness, but the association was different in species with different ecological roles and social structures. Woodland species with moderate group sizes, such as red deer (Cervus elaphus), tend to be larger in open environments. This agrees with expectations of benefits of large size in coping with seasonal variation in resource availability and efficient movement in open landscape. In contrast, open-landscape adapted bulk feeders and grazers that form large social groups, such as wild horses (Equus ferus), tend to have smaller body size in open environments (Saarinen et al. 2016). This reflects a pattern observed in extant ungulates under high population densities, where intraspecific resource competition can limit resource availability to individuals, which is compensated by smaller individual body size (Skogland 1983, Choquenot 1991, Toïgo et al. 2006, Wolverton et al. 2009). Further studies (Bernor et al. 2021, Saarinen et al. 2021b, Cirilli et al. 2022, 2023, 2024) supported a pattern where small-sized equine horses (Equidae, Equinae) tend to be associated with open, grassland-dominated habitats, have heavily grass-dominated diets, and be abundant in the fossil record (suggesting high population densities in open habitats). Large-sized equines tend in turn to be associated with more wooded paleoenvironments, have more mixed-feeding diets, and be less abundant in the fossil record (suggesting smaller population densities). The general relationship of equine body size and ecology is paralleled in intraspecific body size patterns of Pleistocene equine species, with larger sizes associated with more mixed diets and higher productivity of paleoenvironments, and smaller sizes associated with more grass-dominated diets and smaller estimated productivity of paleoenvironments (Cirilli et al. 2022). These patterns suggest that equine body size could be used in an ecometric sense as an indicator of habitat openness and vegetation type past environments, with predominantly small-sized species indicating more open, less productive environments, and predominantly large species or populations with large mean body size indicating more closed and productive paleoenvironments. While this pattern is particularly clear in Pleistocene Equus (Saarinen et al. 2021b, Cirilli et al. 2022, 2023, 2024), it can also be seen in hipparionine horses (Bernor et al. 2021). For example, in the Turolian "Hipparion fauna" localities of this study, such

as Maragheh, the small-sized species such as as *Cremohipparion matthewi* tend to have more grazing mesowear signal than medium- and largesized species, although some large hipparionines, especially in Africa, were also grazers (Bernor *et al.* 2021).

Postcranial ecometrics of mammals

Postcranial (especially limb bone) proportions of terrestrial mammals are associated with various aspects of their environment, as they are adaptations to moving and feeding in environments with different vegetation cover. Polly (2010) noted a relationship of average "calcaneum gear ratio" (ratio of calcaneum tuberosity length to total length of calcaneum) within carnivoran mammal communities with ecological province, mean annual temperature and vegetation cover in present-day North America. Limb ecomorphology of large herbivorous mammals also reflects adaptations to moving in various vegetation cover from closed forests to open, barren landscapes, and their distribution within communities, especially those of ruminants, has been used as an ecometric variable to estimate vegetation cover in Neogene paleoenvironments (e.g., Kovarovic & Andrews 2007, Plummer et al. 2008, Barr 2014, 2017, Gruwier & Kovarovic 2022). Besides carnivorans and artiodactyls, limb proportions of equids have been used as paleoenvironmental indicators. For example, Uzunidis (2021) noted that robustness of metapodials is related to humidity of the paleoenvironment, while width of third phalanx is related to patterns of snow cover in Middle Pleistocene European Equus.

Case study — revising Kurtén's interpretation of later Late Miocene Old World paleoenvironments based on new ecometric analyses

Material and methods

Material

We used molars of large herbivorous mammals for the mesowear analysis in this study. These molars are kept in the following museum collections: the Natural History Museum of London (NHMUK), Naturhistorisches Museum Wien (NHMW), the paleontological collections of the University of Vienna, Muséum national d'histoire naturelle, Paris (MNHN), Senckenberg Museum, Frankfurt (SMF), Bayerische Staatssamlung für Paläontologie, Munich (BSP), and National Museums of Kenya, Nairobi (KNM). Most measurements were taken by J. Saarinen. Mesowear data of ungulates from the Chinese "Hipparion fauna" localities were obtained from Eronen et al. (2014), omitting data for localities that had only ruminant mesowear data, or mesowear data for fewer than three ungulate species. Mesowear data for ungulates from Maragheh were complemented with the data from Bernor et al. (2014) and Jokela (2015). Mesowear data of proboscideans from Maragheh were complemented with data from Loponen (2020).

Dental ecometric data for species from the Late Miocene localities, as well as locality minimum and maximum ages were taken from the NOW Database of fossil mammals (https://doi. org/10.5281/zenodo.4268068, Žliobaite et al. 2023), and those for species from present-day national parks and nature reserves used in comparative dental ecometric analyses were taken from the IUCN and other sources (see footnote to Table 1). The present-day national parks and nature reserves were selected to represent a wide range of modern biomes and are arguably relatively moderately altered by humans as far as herbivore-environment interactions are concerned. An important criterion in this regard was the presence of diverse large herbivorous mammal communities. These can be argued to be as little affected by megafauna loss due to human activities as possible in the present-day situation; for example, they include large mammal species from several families and megaherbivores such as elephants and rhinos in the tropical environments where those taxa are still present. Arjinshan and Dunhuang Xihu National Nature Reserves from China, and a steppe site from Sarisy, Kazakhstan, were chosen to represent Asian steppe environments. Białowieża Forest (Poland-Belarus) and IUCN site 126218 from British Columbia, Canada, were chosen to represent temperate to boreal forests, because of their relatively diverse

large mammal communities. Meru National Park, Samburu Hills and Serengeti were chosen to represent dryer, shrubland to grassland-dominated East African savanna ecosystems, while Aberdare National Park represents a more humid, higher altitude forest-savanna mosaic from East Africa. Nouabale Ndoki National Park from Democratic Republic of Congo represents the central African lowland tropical rainforest biome. Bukit Barisan Selatan National Park, Sumatra, was chosen to represent Southeast Asian tropical rainforest with a diverse large mammal community. Kaziranga National Park, India, represents a southern Asian humid forest-grassland mosaic. Finally, Ranth-

Table 1. Dental ecometric traits of large herbivorous mammal communities in the Late Miocene localities and present-day national parks included in this study. MAX_AGE = maximum age, MIN_AGE = minimum age, HYP = hypsodonty, LOP = longitudinal loph count, AL = acute lophs, OL = obtuse lophs, SF = structural fortification, OT = occlusal topography, BUN = bunodonty, HOD = horizodonty.

Locality	MAX_AGE	MIN_AGE	HYP	LOP	AL	OL	SF	OT	BUN	HOD
Pao-Te-Loc.30*	5.8	5.5	2.13	1.80	0.27	0.73	0	0.20	0.07	1.06
Pao-Te-Loc.31*	7.1	6.9	2.00	1.80	0.40	0.70	0	0.10	0	1.00
Pao-Te-Loc.43*	7.1	6.9	1.88	1.63	0.31	0.75	0	0.13	0.06	1.18
Pao-Te-Loc.49*	7.1	6.9	1.53	1.47	0.35	0.71	0	0.06	0.12	1.22
Pao-Te-Loc.108*	6.6	6.4	1.78	1.89	0.44	0.67	0	0.11	0	1.00
Pao-Te-Loc.109*	7.2	5.3	1.88	1.75	0.25	0.63	0	0.13	0.13	1.11
Yushe-hounao*	7.1	5.3	1.33	1.33	0.67	0.17	0	0.17	0.17	1.50
Qingyang-Loc.115*	7.1	5.3	1.89	1.70	0.44	0.56	0	0.11	0.11	1.10
Qingyang-Loc.116*	7.1	5.3	2.00	2.00	0.30	0.70	0	0.10	0.00	1.00
Wu-Hsiang-Loc.73*	7.1	5.3	1.50	1.63	0.38	0.63	0	0.13	0.13	1.13
Pikermi*	7.5	7.2	1.57	1.43	0.64	0.54	0	0.11	0.07	1.25
Maragheh*	7.6	7.1	1.97	1.58	0.52	0.70	0	0.21	0.06	1.15
Mt. Luberon*	7.6	7.1	1.50	1.50	0.67	0.50	0	0.17	0.17	1.17
Dorn-Dürkheim 1*	8.9	7.6	1.28	1.00	0.67	0.50	0	0.11	0.06	1.39
Kohfidisch*	8.9	7.6	1.50	1.79	0.79	0.43	0	0.07	0	1.00
Lothagam (Lower Nawata)*	7.4	6.5	1.95	1.10	0.24	0.66	0.14	0.17	0.28	1.38
Lukeino*	6.6	5.7	1.57	0.91	0.39	0.65	0.09	0.09	0.17	1.39
Aberdare National Park**	recent	recent	2.17	1.17	0.13	0.78	0.26	0.13	0.13	1.22
Kakamega Forest**	recent	recent	1.59	0.82	0.12	0.53	0.29	0.06	0.35	1.18
Meru National Park**	recent	recent	2.24	1.26	0.12	0.76	0.21	0.24	0.18	1.24
Samburu Hills**	recent	recent	2.27	1.42	0.12	0.81	0.15	0.19	0.15	1.19
Ranthambore National Park**	recent	recent	2.21	1.50	0.21	0.79	0.43	0.07	0.14	1.14
Kaziranga National Park**	recent	recent	1.77	1.00	0.31	0.54	0.31	0.08	0.38	1.15
Tropical rainforest, Bukit Barisan										
Selatan NP, Sumatra***	recent	recent	1.38	0.69	0.38	0.31	0.15	0.08	0.46	1.15
Tropical rainforest,										
Nouabale-Ndoki NP**	recent	recent	1.48	0.80	0.20	0.48	0.32	0.04	0.40	1.08
Serengeti (INCN site 98913)**	recent	recent	2.36	1.39	0.11	0.75	0.21	0.21	0.21	1.14
Dry steppe, Dunhuang Xihu NNR,										
China****	recent	recent	2.67	2.00	0.22	1.00	0	0.33	0	1.00
Białowieża (IUCN site 13410)**	recent	recent	1.50	1.67	0.67	0.83	0.33	0	0.17	1.00
Arjinshan National Nature Reserve,										
China****	recent	recent	2.75	2.00	0.25	1.00	0.13	0.13	0	1.00
Steppe, Sarisy, Kazakhstan										
(IUCN site 133019)**	recent	recent	2.50	2.00	0.25	1.00	0	0.25	0	1.00
Boreal forest, British Columbia										
(IUCN site 126218)**	recent	recent	1.83	2.00	0.83	1.00	0	0	0	1.00

Data sources: *https://doi.org/10.5281/zenodo.4268068.

**https://www.iucnredlist.org/resources/spatial-data-download.

***O'Brien & Kinnaird 1996.

****https://www.cms.int/sites/default/files/document/Annex%20Protected%20Areas%20and%20 Priority%20Sites.pdf, Otaishi & Gao1990, Kaji *et al.* 1989. ambore National Park from India was chosen to represent a dryer, more open south Asian shrubland-grassland "savanna" environment. Dental ecometric data for the localities were compiled by the authors of this study (*see* Table 1, and Appendixes 1 and 2).

Dental ecometric estimates of climate, primary production and normalized difference vegetation index

We analyzed dental ecometrics of large herbivorous mammal paleocommunities from some of the "classic" later Late Miocene (broadly equivalent of Turolian mammal age in Europe) "Hipparion fauna" localities of the Old World. We estimated mean annual precipitation (MAP. mm). mean annual temperature (MAT, °C), net primary production per annum (NPP, $g(C)/m^2/a$) and normalized difference vegetation index (NDVI) of their paleoenvironments. This was used to test Kurtén's interpretations of the steppe, forest and mixed environments of the Chinese "Hipparion faunas", as well as the notion that in the Mediterranean region the fauna from the classic Greek locality Pikermi reflects a more wooded paleoenvironment than the locality of Maragheh in Iran (Kurtén 1952). In addition to these "classic" cases, for comparison we included a couple of well-sampled central European Turolian localities, Dorn-Dürkheim 1 (Germany) and Kohfidisch (Austria), as well as the Lower Nawata Formation of Lothagam (West Turkana, Kenya) and Lukeino (Tugen Hills, Kenya) to represent geographically and presumably climatically widely separate regions.

For dental ecometric estimates of paleoclimatic and plant community properties in the paleoenvironments, we used the equations from Liu *et al.* (2012) and Oksanen *et al.* (2019) that relate hypsodonty (HYP), longitudinal loph count (LOP) and presence of acute lophs (AL) with climatic variables. We chose these models because they are based on training data from a wide range of extant biomes globally. These equations are:

 $MAT = 27 - 28.5 \times AL$ MAP = 2.491 - 289 × HYP - 841 × LOP NPP = 2601 - 144 × HYP - 935 × LOP

In addition, we estimated NDVI using the equation from Žliobaitė (2016): NDVI = 0.337 + $1.429 \times AL + 0.879 \times SF - 0.374 \times OT$. It should be noted that this equation is based on training data from East African national parks, which might limit its applicability outside that region. However, compared to for example mean annual temperature, NDVI may be assumed to be a more globally consistent variable. Nonetheless, we considered the NDVI estimates to be meaningful only in relative terms (in relation to the modern East African model), rather than reflecting realistic NDVI values. We consider this approach justified in terms of analytical integrity, as we use estimated rather than measured values for the recent reference localities as well

We performed a hierarchical clustering using Ward's method to explore associations between the Late Miocene "*Hipparion* fauna" localities and present-day national parks based on the MAP, MAT, NPP and NDVI estimated from dental ecometric traits. We discuss modern biome analogues for the Late Miocene localities based on their clustering with the present-day national parks. In addition, we performed a principal component analysis (PCA) to further explore associations between the modern and Miocene localities based on the estimated MAP, MAT, NPP and NDVI values.

Estimates of dietary variation and local vegetation structure based on mesowear analyses

We performed mesowear analysis following the methodology introduced by Fortelius and Solounias (2000) for the selenodont and ectolophodont ungulates from the Late Miocene localities. The mesowear scorings were then used to calculate univariate mesowear values for the ungulate species following the methodology of Saarinen *et al.* (2016). We analyzed dietary associations of the fossil ungulates with extant ungulates for which dietary composition is known using hierarchical clustering based on percentage of high cusps, percentage of sharp cusps and percentage of blunt cusps, following the methodology introduced by Fortelius and Solounias (2000).

Mean mesowear values averaged over ungulate communities were used for broadly estimating the proportion of arboreal plant taxa (~estimate of woody plant cover). This was done by first estimating relative vegetation openness using the following least squares linear regression between mean ungulate mesowear value and percentage of non-arboreal pollen (NAP%, proxy for non-arboreal plant cover) in palynological records associated with European Pleistocene mammal localities (Saarinen et al. 2016): NAP% = 108.94791 × MW - 104.8073 $(R^2 = 0.60, p = 0.005)$, where MW is the mean mesowear score of the ungulate species in a locality. Next, we calculated arboreal pollen percentages (AP%, proxy for arboreal (woody) plant cover) for the localities by subtracting NAP% from 100%. Note that both trees and shrubs were counted as arboreal ("woody") taxa in Saarinen et al. (2016). This approach has its challenges. For example, NAP percentages have their own sources of error and their direct association with the mammalian paleocommunities can be uncertain in some cases. However, there are a couple of reasons for using such a Pleistocene-based method for estimating vegetation structure for the Late Miocene localities, rather than basing it on a relationship between mesowear of ungulates and tree cover in present environments. First, the Pleistocene was the last time before the drastic effect of modern human activities on global environments. For example, the role of megaherbivores in interacting with their environments, and their dietary signal reflecting the environment (Saarinen & Lister 2016, 2023), were important before the end-Pleistocene megafauna extinctions. The loss of diverse large mammal communities since the Pleistocene was well known to Kurtén himself, and the magnitude and mechanisms of megafauna extinctions in different parts of the world at the end of the Pleistocene have recently been under extensive revisions (e.g., Barnosky et al. 2004, Koch & Barnosky 2006, Stuart 2014, Metcalf et al. 2016, van der Kaars et al. 2017). Second, detailed mesowear analyses of recent ungulate communities associated with a particular area and environment today are lacking. This is due to the difficulty of sampling mesowear from "complete" extant ungulate communities,

partly because of the lack of collections of dental specimens and partly because human influence has rendered extant mammal communities incomplete. Whereas fossil collections include extensive samples of craniodental material of ungulates from fossil localities, in the context of modern-day ungulate communities there are rarely comprehensive molar teeth collections available.

We used a least squares linear regression between elephantoid proboscidean mean mesowear angle (averaged over all species of elephantoids per a locality) and estimated proportion of grasses in Neogene East Africa (Saarinen & Lister 2023) to estimate a difference in the proportion of grasses in the vegetation in the Turolian *"Hipparion* fauna" localities. For this we used an ordinary least squares regression model based on the data presented in Saarinen and Lister (2023: extended data fig. 3): grass% = 2.4131744 × MWA – 230.9144 ($R^2 = 0.70$, p < 0.0001), where MWA is the mean mesowear angle of elephantoid proboscidean species in the locality.

To visualize the geographic variation in the dental ecometrics and mesowear, we present color-interpolated maps of mean ordinated hypsodonty (HYP) and mean mesowear score (MW), using grid interpolation with the following settings: 26 km grid size, 400 km search radius, 600 km grid border. For the interpolation method, we used an inverse distance weighted algorithm (IDW). Both hypsodonty and mesowear were color-coded from lowest values (blue) to highest values (red) with intermediate values represented by a range from blue to green to yellow to red, following the color coding convention introduced by Fortelius *et al.* (2002) for hypsodonty maps.

Results

The data used for dental ecometric and mesowear analyses are summarized in Tables 1–3, and estimates of MAP, MAT, NPP, NDVI and grass% (in vegetation) for the later Late Miocene localities and present-day national parks used in this study are presented in Table 4.

Hierarchical clustering of the later Late Miocene localities with present-day national parks **Table 2.** Mesowear scores of species from the Late Miocene localities included in this study. We followed the original mesowear method of Fortelius and Solounias (2000), with univariate mesowear scores (MW score) calculated using the method of Saarinen *et al.* (2016). *n* = number of specimens studied; %HIGH, %LOW, %SHARP, %ROUND and %BLUNT are percentages of high, low, sharp, round and blunt cusps.

Locality	Family	Species	n	%HIGH	WOJ%	%SHARP	%ROUND	%BLUNT	MW score
Dorn-Dürkheim 1	Chalicotheriidae	Anisodon indet.	4	100	0	50	50	0	1.25
Dorn-Dürkheim 1	Equidae	Hippotherium primigenium	12	75	25	66.7	33.3	0	1.42
Dorn-Dürkheim 1	Equidae	Hippotherium kammerschmittae	2	100	0	100	0	0	1.00
Dorn-Dürkheim 1	Cervidae	Cervidae, large (cf. <i>Procapreolusl</i> Muntiacinae indet)	17	100	0	59	41	0	1.21
Dorn-Dürkheim 1	Cervidae	Cervidae, small (cf. <i>Cervavitulus minimus</i>)	5	100	0	80	20	0	1.10
Dorn-Dürkheim 1	Moschidae	Micromeryx indet.	3	100	0	100	0	0	1.00
Dorn-Dürkheim 1	Bovidae	Miotragocerus indet.	7	100	0	57	43	0	1.21
Kohfidisch	Rhinocerotidae	Aceratherium? indet.	1	100	0	100	0	0	1.00
Kohfidisch	Equidae	Hippotherium indet.	5	100	0	60	40	0	1.20
Kohfidisch	Cervidae	Cervavitus indet.	7	100	0	100	0	0	1.00
Kohfidisch	Cervidae	Euprox indet.	3	100	0	66.7	33.3	0	1.17
Kohfidisch	Cervidae	Procapreolus aff. lockzyi	7	100	0	85.7	14.3	0	1.07
Kohfidisch	Moschidae	Micromeryx sp.	5	100	0	100	0	0	1.00
Kohfidisch	Bovidae	Caprinae indet. indet.	4	100	0	100	0	0	1.00
Kohfidisch	Bovidae	Gazella aff. pilgrimi	9	100	0	55.6	44.4	0	1.22
Kohfidisch	Bovidae	Miotragocerus indet.	2	100	0	50	50	0	1.25
Kohfidisch	Bovidae	Orygotherium heinzi	2	100	0	100	0	0	1.00
Kohfidisch	Bovidae	Palaeoryx indet.	6	100	0	83.3	16.7	0	1.08
Kohfidisch	Bovidae	Protoryx indet.	5	100	0	60	40	0	1.20
Kohfidisch	Bovidae	Tragoportax gaudryi	6	100	0	83.3	16.7	0	1.08
Maragheh	Chalicotheriidae	Ancylotherium pentelici	1	100	0	100	0	0	1.00
Maragheh	Rhinocerotidae	Iranotherium morgani	3	33.3	66.7	0	66.7	33.3	2.33
Maragheh	Rhinocerotidae	Miodiceros neumayri	2	100	0	0	100	0	1.50
Maragheh	Rhinocerotidae	Chilotherium persiae	8	100	0	62.5	37.5	0	1.19
Maragheh	Equidae	Cremohipparion matthewi	1	0	100	0	100	0	2.50
Maragheh	Equidae	Cremohipparion moldavicum	7	71.4	28.6	42.9	57.1	0	1.57
Maragheh	Equidae	Cremohipparion aff. moldavicum	6	33.3	66.7	50	50	0	1.92
Maragheh	Equidae	Hipparion campbelli	3	66.7	33.3	0	100	0	1.83
Maragheh	Equidae	Hippotherium brachypus	5	60	40	0	100	0	1.90
Maragheh	Giraffidae	Bohlinia attica	2	100	0	100	0	0	1.00
Maragheh	Giraffidae	Honanotherium bernori	2	100	0	50	50	0	1.25
Maragheh	Giraffidae	Helladotherium duvernoyi	2	100	0	0	100	0	1.50
Maragheh	Giraffidae	Palaeotragus coelophryes	1	100	0	100	0	0	1.00
Maragheh	Giraffidae	Samotherium neumayri	5	100	0	20	80	0	1.40
Maragheh	Bovidae	Tragoportax amalthea	11	100	0	0	100	0	1.50
Maragheh	Bovidae	Urmiatherium polaki	4	50	50	25	75	0	1.88
Maragheh	Bovidae	<i>Gazella</i> sp.	9	66.7	33.3	22.2	77.8	0	1.72
Maragheh	Bovidae	Criotherium argaloides	1	100	0	100	0	0	1.00
Maragheh	Bovidae	Miotragocerus indet.	1	100	0	100	0	0	1.00
Maragheh	Bovidae	Oioceros atropatenes	5	100	0	80	20	0	1.10
Maragheh	Bovidae	<i>Palaeoreas</i> sp.	8	62.5	37.5	12.5	87.5	0	1.81
Maragheh	Bovidae	Protoryx carolinae	1	100	0	0	100	0	1.50
Maragheh	Bovidae	Protragelaphus skouzesi	3	66.7	33.3	0	100	0	1.83
Maragheh	Bovidae	Samoceros minotaurus	1	100	0	0	100	0	1.50
Mt. Luberon	Equidae	Hipparion prostylum	11	9.1	90.9	27.3	63.6	9.1	2.32
Mt. Luberon	Cervidae	Pliocervus matheronis	2	100	0	50	50	0	1.25
Mt. Luberon	Bovidae	Iragoportax amalthea	3	100	0	33.3	66.7	0	1.33
								con	ntinued

Table 2. Continued.

Locality	Family	Species	n	%HIGH	%LOW	%SHARP	%ROUND	%BLUNT	MW score
Mt. Luberon	Bovidae	Gazella deperdita	5	100	0	60	40	0	1.20
Pikermi	Chalicotheriidae	Ancylotherium pentelici	2	100	0	100	0	0	1.00
Pikermi	Rhinocerotidae	Acerorhinus neleus	1	100	0	100	0	0	1.00
Pikermi	Rhinocerotidae	Miodiceros neumayri	7	100	0	42.9	57.1	0	1.29
Pikermi	Rhinocerotidae	Dihoplus pikermiensis	7	100	0	85.7	14.3	0	1.07
Pikermi	Equidae	Cremohipparion mediterraneum	10	30	70	80	20	0	1.80
Pikermi	Equidae	Hippotherium brachypus	8	75	25	37.5	62.5	0	1.56
Pikermi	Giraffidae	Bohlinia attica	3	100	0	100	0	0	1.00
Pikermi	Giraffidae	Helladotherium duvernoyi	2	100	0	100	0	0	1.00
Pikermi	Giraffidae	Palaeotragus rouenii	3	100	0	100	0	0	1.00
Pikermi	Cervidae	Pliocervus pentelici	1	100	0	100	0	0	1.00
Pikermi	Bovidae	Gazella capricornis	5	100	0	60	40	0	1.20
Pikermi	Bovidae	Miotragocerus valenciennesi	7	100	0	85.7	14.3	0	1.07
Pikermi	Bovidae	Oioceros rothii	4	100	0	75	25	0	1.13
Pikermi	Bovidae	Palaeoreas lindermayeri	1	100	0	85.7	14.3	0	1.07
Pikermi	Bovidae	Palaeoryx pallasi	4	100	0	/5	25	0	1.13
Pikermi	Bovidae	Protoryx carolinae	2	100	0	50	50	0	1.25
Pikermi	Bovidae	Prostrepsiceros rotunaicornis	1	100	0	0	100	0	1.50
Pikermi	Bovidae	Protragelaprius skouzesi	2	100	0	100	0	0	1.00
Pikermi	Bovidae	Sporadotragus parvidens	2	100	0	50	50 45 5	0	1.25
Pao-Te-Loc.30	Rhinocerotidae	Chilotherium-30 indet.	6	100	0	54.5 16	45.5 83	0	1.23
Pao-Te-Loc.30	Bovidae	(not specified) Gazella-30 indet.	26	100	0	69	30	0	1.15
Pao-Te-Loc.30	Equidae	(not specified) Hipparion-30 indet.	17	64	35	35	64	0	1.68
Pao-Te-Loc.30	Giraffidae	(not specified) Palaeotragus-30 indet.	2	100	0	50	50	0	1.25
Pao-Te-Loc.30	Giraffidae	(not specified) Samotherium-30 indet.	17	88	11	5	94	0	1.59
Pao-Te-Loc.30	Bovidae	(not specified) <i>Sinotragus</i> -30 indet.	10	90	10	70	30	0	1.25
Pao-Te-Loc.30	Bovidae	(not specified) <i>Tragoreas (Dorcadoryx</i>)-30	2	100	0	0	100	0	1.50
Pao-Te-Loc.30	Bovidae	indet. (not specified) Urmiatherium-30 indet.	31	83	16	25	74	0	1.53
Pao-Te-Loc.31	Rhinocerotidae	(not specified) Chilotherium-31 indet.	3	66	33	0	100	0	1.83
Pao-Te-Loc.31	Equidae	(not specified) <i>Hipparion</i> -31 indet.	2	100	0	0	100	0	1.50
Pao-Te-Loc.31	Rhinocerotidae	(not specified) Sinotherium-31 indet	2	0	100	100	0	0	2.00
Pao-Te-Loc 31	Bovidae	(not specified) Tragoreas (Dorcadoryx)-31	2	100	0	100	0	0	1 00
	Dhinagaratidag	indet. (not specified)	5	00	20	20	00	0	1.00
	niniocerotidae	(not specified)	5	00	20	20	00	0	1.00
Pao-le-Loc.43	Bovidae	Gazella-43 indet. (not specified)	3	0	100	33	0	66	2.67
Pao-Te-Loc.43	Equidae	Hipparion-43 indet. (not specified)	12	100	0	66	33	0	1.17
Pao-Te-Loc.43	Giraffidae	Palaeotragus-43 indet. (not specified)	3	100	0	0	100	0	1.50

Locality	Family	Species	n	%HIGH	WOJ%	%SHARP	%ROUND	%BLUNT	MW score
Pao-Te-Loc.43	Giraffidae	<i>Samotherium</i> -43 indet. (not specified)	2	50	50	0	100	0	2.00
Pao-Te-Loc.43	Bovidae	Urmiatherium-43 indet. (not specified)	2	50	50	0	100	0	2.00
Pao-Te-Loc.49	Rhinocerotidae	Acerorhinus-49 indet. (not specified)	2	100	0	100	0	0	1.00
Pao-Te-Loc.49	Cervidae	Cervavitus-49 indet. (not specified)	2	100	0	50	50	0	1.25
Pao-Te-Loc.49	Bovidae	Gazella-49 indet. (not specified)	10	100	0	90	10	0	1.05
Pao-Te-Loc.49	Bovidae	Urmiatherium-49 indet. (not specified)	5	80	20	40	60	0	1.5
Pao-Te-Loc.49	Giraffidae	Honanotherium-49 indet. (not specified)	2	100	0	0	100	0	1.5
Pao-Te-Loc.49	Giraffidae	Palaeotragus-49 indet. (not specified)	3	100	0	33	66	0	1.33
Pao-Te-Loc.49	Eguidae	Hipparion-49 indet. (not specified)	3	100	0	66	33	0	1.17
Wu-Hsiang-Loc.73	Cervidae	Cervavitus-73 indet. (not specified)	16	100	0	62	37	0	1.19
Wu-Hsiang-Loc.73	Bovidae	Gazella-73 indet. (not specified)	7	100	0	28	71	0	1.36
Wu-Hsiang-Loc.73	Equidae	Hipparion-73 indet. (not specified)	5	100	0	40	60	0	1.30
Lukeino	Equidae	Hipparionini indet.	2	50	50	50	50	0	1.75
Lukeino	Bovidae	Tragelaphus spekei?	2	100	0	50	50	0	1.25
Lukeino	Bovidae	Bovidae indet. indet. (large, hypsodont)	1	100	0	100	0	0	1.00
Lothagam (Nawata)	Bovidae	Alcelaphini indet. indet.	3	33.3	66.7	0	33.3	66.7	2.50
Lothagam (Nawata)	Bovidae	Aepyceros praemelampus	1	100	0	100	0	0	1.00
Lothagam (Nawata)	Bovidae	Madoqua indet.	1	100	0	100	0	0	1.00
Lothagam (Nawata)	Bovidae	Boselaphini indet. indet.	5	100	0	40	60	0	1.30
Lothagam (Nawata)	Bovidae	Tragelaphini indet. indet. (<i>T. kyaloae</i> ?)	1	100	0	100	0	0	1.00
Lothagam (Nawata)	Bovidae	Bovini indet. indet.	2	100	0	0	100	0	1.50
Lothagam (Nawata)	Giraffidae	Palaeotragus germaini	1	100	0	100	0	0	1.00
Lothagam (Nawata)	Equidae	Sivalhippus turkanense	3	66.7	33.3	66.7	0	33.3	1.67
Lothagam (Nawata)	Equidae	Eurygnathohippus feibeli	4	0	100	0	100	0	2.50
Lothagam (Nawata)	Rhinocerotidae	Brachypotherium lewisi	3	100	0	0	66.7	33.3	1.67

Table 2. Continued.

Table 3. Elephantoid proboscidean mesowear angles from the Late Miocene localities included in this study. Data collected by J. Saarinen, with data for Maragheh partly obtained from Loponen (2020). MW = mesowear.

Locality	Species	Specimen	Mean MW angle
Dorn-Dürkheim 1	Anancus lehmanni	SMF-DD3142	103.07
Dorn-Dürkheim 1	Anancus lehmanni	SMF-DD5362a	108.60
Dorn-Dürkheim 1	Anancus lehmanni	SMF-DD5377	106.00
Dorn-Dürkheim 1	Anancus lehmanni	SMF-DD3167	114.40
Dorn-Dürkheim 1	Anancus lehmanni	SMF-DD E1:6G, 16.7.89	108.90
Dorn-Dürkheim 1	Anancus lehmanni	SMF-DD zahn 65 Mastodon, F6	108.70
Dorn-Dürkheim 1	Tetralophodon longirostris	SMF-DD3163	103.50
Lothagam	Anancus kenyensis	KNM-LT 361	116.40
Lothagam	Anancus kenyensis	KNM-LT 437	112.40
Lothagam	Anancus kenyensis	KNM-LT-361	120.00
Lothagam	Primelephas korotorensis	KNM-LT 23783 (type)	110.90
Lothagam	Primelephas korotorensis	KNM-LT 23783 (type)	111.75
č			continued

Table 3. Continued.

Locality	Species	Specimen	Mean MW angle
Lothagam	Primelephas korotorensis	KNM-LT 358	121.30
Lothagam	Primelephas korotorensis	KNM-LT 375	118.00
Lothagam	Primelephas korotorensis	KNM-LT 351 (holotype)	116.00
Lothagam	Stegotetrabelodon orbus	KNM-LT 23791	115.83
Lothagam	Stegotetrabelodon orbus	KNM-LT 347	110.00
Lothagam	Stegotetrabelodon orbus	KNM-LT-26318	121.90
Lothagam	Stegotetrabelodon orbus	KNM-I T-26319	119 90
Lothagam	Stegotetrabelodon orbus	KNM-I T-26319	117 00
Lothagam	Stegotetrabelodon orbus	KNM-I T-349	121 20
Lothagam	Stegotetrabelodon orbus	KNM-I T-366	121 47
Lothagam	Stegotetrabelodon orbus	KNM-I T-367	112 75
Lothagam	Stegotetrabelodon orbus	KNM-I T-434	122.60
Lothagam	Stegotetrabelodon orbus	KNM-IT 354 (holotype)	108.93
Lukeino	Anancus kenvensis	KNM-LLI 1023	03.75
Lukeino	Anancus konvonsis		101.90
Lukeino	Anancus kenyensis		121.00
Lukeino	Anancus kenyensis		102.10
Lukeino	Anancus kenyensis		98.20
Lukeino	Anancus kenyensis	KNM-LU 57	121.25
Lukeino	Anancus kenyensis	KNM-LU 57	113.70
Lukeino	Anancus kenyensis	KNM-LU 65	104.60
Lukeino	Anancus kenyensis	KNM-LU 763	104.90
Lukeino	Anancus kenyensis	KNM-LU 975	101.87
Lukeino	Anancus kenyensis	KNM-TH 37045	108.95
Lukeino	Loxodonta cookei	KNM-LU 526	90.50
Lukeino	Loxodonta cookei	KNM-LU 67	101.15
Lukeino	Loxodonta cookei	KNM-TH 37521	92.43
Lukeino	Loxodonta cookei	KNM-LU 916	105.80
Lukeino	Mammuthus subplanifrons	KNM-LU 7597	99.25
Lukeino	Primelephas korotorensis	KNM-LU 58	110.10
Lukeino	Primelephas korotorensis	KNM-LU 59	121.60
Lukeino	Primelephas korotorensis	KNM-TH 15581	98.50
Lukeino	Primelephas korotorensis	KNM-TH 15581	102.70
Lukeino	Primelephas korotorensis	KNM-TH 32836	99.80
Lukeino	Primelephas korotorensis	KNM-LU 1025	97.10
Lukeino	Primelephas korotorensis	KNM-LU 522	104.30
Maragheh	Choerolophodon pentelici	NHMUK-PV-M7422	126.35
Maragheh	Choerolophodon pentelici	NHMUK-PV-M3957	126.60
Maragheh	Choerolophodon pentelici	NHMUK-PV-M361	123 20
Maragheh	Choerolophodon pentelici	NHMW-Mar-2379 (A 4826)	118 10
Maragheh	Choerolophodon pentelici	NHMW-Mar-2392 (A 4831)	127.50
Maragheh	Choerolophodon pentelici	NHMW-Mar-2382 (A 4825)	128.40
Maragheh	Choerolophodon pentelici	NHMW-Mar-2391	114 85
Maragheh	Choerolophodon pentelici		127.05
Maragheh	Choerolophodon pentelici	NHMW-Mar-2371 (A 4868)	126.80
Maragheh	Choorolophodon pentelici	NHMM Mar 2377 (A 4000)	120.00
Maraghah	Choerelephoden pentelici	NUMN/Mar 24470	120.40
Maraghah	Choerelephoden pentelici	NUM/W/ Mar 2260A (4869 A)	107.02
Maragheh	Choerelephoden pentelici	NITIVIVI-IVIAI-2309A (4000 A)	127.93
Maragnen			123.00
Maraghen	Criberolopriodon pentelici	NUNAVA Max 2005	120.40
Maragnen	Konobelodon atticus	NHMW Mar 2395	90.40
waragneh	Konobelodon atticus		99.60
Pikermi	Choerolophodon pentelici	MNHN.Pik-1705	118.90
Pikermi	Konobelodon atticus	BSP AS II 182	97.20
		(type of "Tetralophodon" atticus)	
Pikermi	Konobelodon atticus	MNHN.Pik-3674	104.95
Pikermi	Konobelodon atticus	MNHN.Pik-1704a	103.30
Pikermi	<i>Mammut</i> indet.	NHMUK-PV-M10104	96.60

based on MAT, MAP, NPP and NDVI estimated from dental traits clustered present-day national parks into groups that reflect similar biomes, and revealed broad similarities of the fossil localities to modern biomes (Fig. 1A). Pao-Te localities 30 and 109 and Qingyang locality 116 clustered with modern central Asian steppe reserves. Pao-Te localities 31, 43, 49 and 108, Qingyang locality 115, Wu-Hsiang locality 73 and Maragheh clustered together, with Ranthambore National Park, India (dry deciduous woodland-grassland mosaic), representing the closest modern analogue. In contrast, Yushe-hounao, Pikermi and Mt. Luberon clustered together, next to Dorn-Dürkheim 1 and Kohfidisch, with Kohfidisch clustering closest to modern Białowieża Forest (temperate forest). The East African localities clustered together with modern African environments, Lothagam with various extant "savanna" national parks of Kenya, and Lukeino with extant African tropical forest reserves, although being ecometrically most closely associated with Kaziranga National Park, India. PCA performed on the estimated MAT, MAP, NPP and NDVI values mirrored the hierarchical clustering results, and it shows that the associations between the fossil localities and present-day national parks are not driven by geographic proximity. For example, tropical rainforests of Africa and Asia are separated from both African and Asian steppes/savannas, and both European and East Asian localities were clustered close to extant temperate forests (Fig. 1B). PC1 explained 52.2% of the variation and was driven by MAP and NPP and to a lesser degree by NDVI, as shown in the loading matrix. PC2 explained 45.9% of variation and was driven principally by MAT and to a lesser degree by NPP and MAP (Fig 1B).

Mean mesowear scores (calculated using the method of Saarinen *et al.* 2016) provided tree cover estimates (equivalent to AP% estimates from Pleistocene European palynological records) for the later Late Miocene "*Hipparion* fauna" localities (Table 4). They mostly agreed with the dental ecometrics-based biome estimates, with Pikermi, Dorn-Dürkheim 1, Kohfidisch and Lukeino showing values higher than 75%, suggesting heavily wooded environments, and Maragheh and Lothagam (Lower Nawata) showing values close to 40%, corresponding with more open "savanna" environments. Of the northern Chinese localities, only Pao-Te-Loc.43 showed very a low AP% estimate (6.3%) consistent with a fully open steppe, while the Pao-Te-Loc.30 and 31 showed intermediate AP% estimates (50% and 32%, respectively), perhaps indicating "mixed" environments at a steppe edge (sensu Kurtén 1952). In contrast, Pao-Te-Loc.49 and Wu-Hsiang-Loc.73 had higher estimated woody plant cover (between 65% and 70%), based on mesowear (Table 4). Grass% estimates based on proboscidean mesowear indicated less than 25% grass (of local vegetation) in Dorn-Dürkheim 1, Pikermi and Lukeino, ca. 35% grass in Maragheh and ca. 50% grass in Lower Nawata Formation in Lothagam (Table 4).

The differences in the community-level mesowear signals between the Late Miocene localities were also reflected in the mesowear signal of key taxonomic groups of large herbivorous mammals. Mesowear angle data from proboscideans is mostly too scarce for intra-specific comparisons, but some genus-level patterns can be noted. *Anancus* had browse-dominated mesowear in Dorn-Dürkheim 1 and Lukeino, as opposed to Lothagam, where it showed grass-dominated mesowear (Table 3). Similarly, *Primelephas* showed browse-dominated mesowear in Lukeino, but grass-dominated mesowear in Lukeino, but grass-dominated mesowear in Lothagam (Table 3).

Mesowear analysis using hierarchical clustering based on percentage of high cusps, sharp cusps and blunt cusps (Fig. 2) further demonstrated dietary differences of ungulates from the Late Miocene localities included in this study (excluding the Chinese localities; discussed in Eronen et al. 2014). Several species from most of the localities clustered with extant pure browsers such as Alces alces and Rhinoceros sondaicus. However, these species were often represented by only one specimen, so their dietary interpretation should be considered tentative, and they are shown here because they are included in the community-level mesowear analyses. Most species from Dorn-Dürkheim 1, Kohfidisch and Pikermi cluster with extant browsers and browse-dominated feeders, such as Okapia johnstoni, Odocoileus virginianus, Antilocapra

americana, Antidorcas marsupialis, Capreolus capreolus, Giraffa camelopardalis, Dicerorhinus sumatrensis and Rhinoceros unicornis, or the browse-dominated mixed-feeders Cervus

Table 4. Mean annual precipitation (MAP, mm), mean anual temperature (MAT, °C), net primary productivity (NPP) and normalized difference vegetation index (NDVI) estimated from large mammal dental ecometrics (Liu *et al.* 2012, Oksanen *et al.* 2019), grass% (percentage of grass in vegetation) estimated from proboscidean mesowear (Saarinen & Lister 2023), and arboreal pollen percentage (AP%, proxy for arboreal (woody) plant cover) estimated from mean mesowear scores of ungulates (Saarinen *et al.* 2016) from later Late Miocene "*Hipparion* fauna" localities and present-day national parks. Note that the NDVI estimate is based on training data from present-day Kenyan national parks (Žliobaitė *et al.* 2016) and should be considered a relative value compared to the East Afican model, rather than "actual" NDVI (thus values above 1 are present in some cases). Minimum and maximum age (MIN_AGE and MAX_AGE, respectively, millions of years) are given for the Miocene localities.

Locality	MAX_AGE	MIN_AGE	NDVI (relative to East African model)	MAP	NPP	MAT	Grass% (estimated from proboscidean mesowear)	AP% (estimated from MW score)
Late Miocene "Hipparion								
fauna" localities								
Pao-Te-Loc.30	5.8	5.5	0.64	361	611	19		50
Pao-Ie-Loc.31	/.1	6.9	0.87	399	630	16		32.3
Pao-Ie-Loc.43	/.1	6.9	0.74	583	812	18		6.3
Pao-Te-Loc.49	7.1	6.9	0.82	812	1006	17		67.8
Pao-Te-Loc.108	6.6	6.4	0.93	389	579	14		
Pao-Te-Loc.109	7.2	5.3	0.65	477	695	20		
Yushe-hounao	7.1	5.3	1.23	984	1162	8		
Qingyang-Loc.115	7.1	5.3	0.93	515	739	14		
Qingyang-Loc.116	7.1	5.3	0.73	231	443	18		
Wu-Hsiang-Loc.73	7.1	5.3	0.83	691	866	16		65.2
Pikermi	7.5	7.2	1.22	835	1039	9	24.3	76.6
Maragheh	7.6	7.1	0.99	597	844	12	34.6	38
Mt. Luberon	7.6	7.1	1.23	796	983	8		38.6
Dorn-Dürkheim 1	8.9	7.6	1.25	1281	1482	8	24.6	77.4
Kohfidisch	8.9	7.6	1.43	556	715	5		85.2
Lothagam (Lower Nawata)	7.4	6.5	0.74	1000	1289	20	49.8	39.9
Lukeino	6.6	5.7	0.94	1271	1522	16	15.7	59.5
Present-day national parks								
Aberdare National Park	recent	recent	0.7	875	1190	23		
Kakamega Forest	recent	recent	0.74	1339	1602	24		
Meru National Park	recent	recent	0.6	781	1097	24		
Samburu Hills	recent	recent	0.57	638	944	24		
Ranthambore National Park	recent	recent	0.99	590	880	21		
Kaziranga National Park	recent	recent	1.02	1139	1411	18		
Tropical rainforest, Bukit								
Barisan Selatan NP	recent	recent	0.99	1509	1754	16		
Tropical rainforest,								
Nouabale-Ndoki NP	recent	recent	0.89	1390	1640	21		
Serengeti (INCN site 98913)	recent	recent	0.6	638	959	24		
Dry steppe, Dunhuang								
Xihu NNR, China	recent	recent	0.53	38	347	21		
Białowieża (IUCN site 13410) Arjinshan National Nature	recent	recent	1.58	656	827	8		
Reserve, China Steppe Sarisy Kazakhstan	recent	recent	0.76	14	335	20		
(IUCN site 133019) Boreal forest, British	recent	recent	0.6	87	371	20		
Columbia (IUCN site 126218)	recent	recent	1.53	279	467	3		

Fig. 1. $-\mathbf{A}$: Hierarchical clustering (Ward's method) of later Late Miocene localities (colored) and present-day national parks (black) based on MAP, MAT, NPP and NDVI (relative to East African model) estimated from dental ecometric traits. Half square Euclidean distances are indicated for 17 selected clusters. Letters $\mathbf{a}-\mathbf{e}$ mark clusters that broadly correspond with specified extant biomes. $-\mathbf{B}$: PCA results for later Late Miocene localities and present-day national parks performed on MAP, MAT, NPP and NDVI. The ellipses indicate broad biome associations. Colors of the ellipses same as those used for the main clusters in Fig. 1A.

Fig. 2. Hierarchical clustering (Ward's method) of mesowear of ungulates from Pikermi, Maragheh, Dorn-Dürkheim 1, Kohfidisch, Mt. Luberon, Lothagam (Lower Nawata) and Lukeino with extant ungulate species (black) based on percentage of high relief, sharp cusps and blunt cusps. Half square Euclidean distances are indicated for 19 selected clusters. Miocene ungulate paleopopulations are marked with colors according to their localities.

canadensis, Odocoileus hemionus, Tragelaphus scriptus, Taurotragus oryx and Tragelaphus imberbis (Fig. 2). Hippotherium primigenium from Dorn-Dürkheim 1 and H. brachypus from Pikermi clustered with the extant mixed-feeders Eudorcas thomsonii, Nanger granti and Ovis canadensis. Cremohipparion mediterraneum from Pikermi clustered with extant Heterohyrax brucei. In contrast, the ungulates from Maragheh, Mt. Luberon and Lothagam (Lower Nawata) showed a wider dietary spectrum, including grazers. Iranotherium morgani from Maragheh and Sivalhippus turkanense from Lothagam clustered with the extant grazers Alcelaphus buselaphus, Connochaetes taurinus, Axis axis and Rucervus duvaucelii, and Brachypotherium lewisi from Lothagam with Alcelaphus lichtensteinii and Hippotragus niger. Furthermore, Cremohipparion matthewi from Maragheh, Hipparion prostylum from Mt. Luberon and Eurygnathohippus feibeli from Lothagam clustered with extant Ceratotherium simum, Equus quagga, E. grevyi and Damaliscus lunatus, and Alcelaphini indet. from Lothagam with extant Bison bison, all of which are pure grazers. Most of the ungulates from Maragheh clustered with a diverse group of extant mixed-feeders, including several grass-dominated feeders, such as Hippotragus equinus, Redunca redunca, R. fulvorufula, Rusa unicolor, Syncerus caffer and Kobus ellipsiprymnus. The ungulate sample from Lukeino was too small for comprehensive interpretation, but they clustered with extant browse-dominated feeders (Tragelaphus with extant Taurotragus oryx and the hipparionine with extant Procavia capensis). In our data, none of the small-sized ungulates from the Miocene localities clustered specifically with the extant "minute abraded brachydont" ("mabra") species such as duikers and hyraxes, which are thought to show cusp tip crushing due to frugivory (Fortelius & Solounias 2000). Thus, we do not expect the "mabra effect" to significantly affect our dietary interpretations within the browse-to-graze spectrum.

Color-interpolated maps (Fig. 3) demonstrate the geographic distribution of mean ordinated hypsodonty and mean mesowear score in the Late Miocene "*Hipparion* fauna" localities. They show a "core area" of the "Old World savannah palaeobiome" (OWSP), *sensu* Kaya *et al.* (2018), including Lothagam, Maragheh, Qingyang localites and some of the Pao-Te localites. Here relatively high hypsodonty and mesowear values indicate relatively dry, open and grassy paleoenvironments, although some other localities considered part of the OWSP, most notably Pikermi, differ from these by having lower mean ordinated hypsodonty and more browse-dominated mesowear signal, indicating a somewhat more humid and less grassrich paleoenvironment.

Discussion

Our results broadly support Kurtén's (1952) interpretations of a steppe-edge ecotone with steppe, forest and mixed environments in northern China, wooded paleoenvironments in Pikermi and in central Europe, and a more open environment in Maragheh. The northern Chinese localities showed interesting variation in the dental ecometric estimates. Qingyang-Loc.116 (Kurtén's "dorcadoides" fauna) and Pao-Te localities 30 and 109 clustered with modern steppe reserves, Yushe-hounao (Kurtén's "gaudrvi" fauna) clustered close to modern temperate forest (Białowieża Forest), and the rest of the sites (for example most of the Pao-Te localities, considered by Kurtén to mostly represent "mixed" faunas at a steppe edge environment) clustered close to the deciduous woodlandgrassland mosaic of present-day Ranthambore National Park. More detailed differences are revealed when the dental ecometric patterns and the ungulate mesowear-based estimates of woody plant cover are compared. Pao-Te localities 31 and 108, and Qinyang-Loc.115 clustered with Maragheh, and are differentiated from Pao-Te localities 43 and 49 and Wu-Hsiang-Loc.73 and Ranthambore National Park mainly because of the lower MAP and NPP estimates. Mesowear indicated very low percentage of woody plant cover for Pao-Te-Loc.43, intermediate woody cover for Pao-Te localities 30 and 31, and relatively high woody cover for Pao-Te-Loc.49 and Wu-Hsiang-Loc.73. These patterns reflect the dental ecometric estimates, which indicate higher precipitation and NPP values for Pao-Te-Loc.49 and Wu-Hsiang-Loc.73 than for the rest of the localities. Unfortunately, mes-

Fig. 3. (A) Geographic distribution of the mean ordinated hypsodonty, and (B) mean mesowear scores (Saarinen *et al.* 2016) for Late Miocene localities. Do1 = Dorn-Dürkheim 1, Ko = Kohfidisch, Lub = Mt. Luberon, Pi = Pikermi, Ma = Maragheh, Lo = Lothagam (Lower Nawata), Lu = Lukeino, Pa = Pao-Te, Qi = Qingyang, Yu = Yushe-hounao, Wu = Wu-Hsiang.

owear data for the rest of the localities were too scarce to allow for woody cover estimation.

Paleoenvironmental interpretations of the Chinese "Hipparion fauna" localities based on dental ecometrics and mesowear can be summarized as follows: (1) Qinyang localities 116 and 115 represent relatively dry and low-productivity, possibly steppe-like environments, in broad agreement with Kurtén's assessment based on the mostly open-adapted "dorcadoides" fauna. (2) Pao-Te localities 30, 31, 43, 108 and 109 are characterized by relatively low MAP and NPP estimates and very low to intermediate estimates of woody cover based on mesowear, thus being in broad agreement with Kurtén's interpretation of them representing "ecotone" environments at the steppe-forest edge, based on ecomorphologically "mixed" faunas. (3) Pao-Te locality 49 and Wu-Hsiang-Loc.73 are characterized by higher precipitation and NPP estimates and higher woody cover estimates than the previously mentioned sites, while Yushe-hounao has even higher precipitation and NPP estimates,

clustering with modern temperate forests. Of these localities, Wu-Hsiang-Loc.73 and Yushe represent Kurtén's "gaudryi" faunas, which he interpreted as being associated with forest environments, while Pao-Te-Loc.49 is more ambiguous in terms of Kurtén's interpretation, possibly representing a "mixed" faunal assemblage. Thus, our new ecometric estimates broadly correspond with Kurtén's (1952) interpretations. They suggest a similar environmental gradient from the driest, least productive and most open environments in the north-west (Qinyang localities and some of the Pao-Te localities), to the most humid, productive and wooded environments in the south-east (Wu-Hsiang and Yushe), and intermediate environments in the middle (most of the Pao-Te localities).

Dental ecometric estimates of climatic variables, NPP and NDVI clustered the classic Turolian "*Hipparion* fauna" of Pikermi together with Yushe-hounao and Mt. Luberon, with the closest modern analogue being Białowieża Forest (temperate forest). Mesowear-based estimates indicated relatively high woody plant cover (AP% = 76.6%) and low grass cover (grass% = ca. 24), suggesting a woodland environment with some grassy undergrowth. As with the other Miocene localities, it is important to avoid direct association of Pikermi with modern biomes, such as temperate forest in Białowieża, as the climate and environment in the Late Miocene may not have direct modern analogues, but such comparison serves as a broad approximation. In fact, the cluster containing Pikermi, Yushe-hounao and Mt. Luberon is separated from Dorn-Dürkheim 1 and a cluster containing Kohfidisch and the modern Białowieża Forest. reflecting some differences in the environments. while common features for all these include a combination of relatively low estimated MAT, and relatively high MAP, NPP and NDVI (Fig. 1 and Table 4). It is important to note that some of the ecometric estimates, MAT and NDVI in particular, should be considered only relative and comparable only with other dental ecometrics-based estimates rather than representing "actual" values. While estimates of precipitation and NPP based on dental ecometric estimates tend to correspond with estimated values based on other proxies, temperature estimates from dental ecometrics tend to be less accurate and should be taken to reflect relative differences that are comparable only with other dental ecometrics-based estimates (e.g., Oksanen et al. 2019). This is also evident in the case of Pikermi: the MAP estimate based on dental ecometrics is similar to that estimated from associated plant fossil records (800-1000 mm/year; see Bruch et al. 2006, 2007), while the MAT estimated from plant fossil data is higher and more plausible (17-18 °C; see Bruch et al. 2006, 2007). It is likely that while dental ecometrics cluster Pikermi with extant temperate forests, this connection reflects similar plant community properties (especially NPP) rather than exact climatic analogue, especially in terms of temperature. Several paleobotanical studies have supported the presence of dry to mesic, temperate to subtropical forest or woodland habitat in Pikermi (Solounias & Dawson-Saunders 1988, Solounias et al. 2010, Denk et al. 2018).

Our results indicate browse-dominated dietary spectrum of the ungulates and probosci-

deans in Pikermi. Nearly all ungulates in Pikermi had browsing to browse-dominated mesowear signals, and only two species of hipparionine equids (Hippotherium brachypus and Cremohipparion) had more grass-dominated mixed-feeding mesowear signals (Table 2). Of the elephantoid proboscideans, Mammut indet. and Konobelodon atticus had mesowear values indicating browsing diets, with only Choerolophodon pentelici showing more grass-dominated mesowear angle (although this is based on only one specimen) (Table 3). Our mesowear-based results of predominantly browse-dominated diets in Pikermi correspond with similar results from other dietary analysis methods, such as microwear analyses (Solounias et al. 2010). Furthermore, some faunal elements in Pikermi have been argued to reflect a relatively wooded paleoenvironment, for example the primate *Mesopithecus* and many browse-adapted large herbivorous mammal taxa (Kostopoulos 2009). Since Kurtén (1952), many authors have noted the relatively low percentage of hypsodont large herbivorous mammal species in Pikermi compared to Maragheh (Solounias et al. 1999, Ataabadi et al. 2013), which we also confirm here (Table 1). These results support Kurtén's original assessment of a wooded paleoenvironment in Pikermi (Kurtén 1952).

In contrast to Pikermi, dental ecometric estimates clustered Maragheh with several of the north Chinese "Hipparion fauna" localities, with Ranthambore National Park, India, representing the closest modern analogue. Mesowear-based estimates indicate much lower woody plant cover (AP% = 38%) and higher grass cover (grass% = ca. 35%), further suggesting a "savanna-like" woodland-grassland environment, perhaps something similar to the vegetation type in the Ranthambore National Park today. This interpretation corresponds with Kurtén's (1952) assessment of a more open environment in Maragheh than in Pikermi based on higher proportion of hypsodont ungulates, which has since then been noted by others in more recent revisions (e.g., Ataabadi et al. 2013) and confirmed here (Table 1).

Other proxies independent of the mammalian fossil record support a broadly similar paleoenvironmental interpretation. Denk *et al.* (2018) noted based on paleobotanical record an environmental gradient from the wooded environments in the west (Europe) to more open "steppe forest" environments towards the east (Anatolia), which they considered broadly equivalent to Kurtén's (1952) remarks. Strömberg et al. (2007) argued, based on phytolith analysis, a prominent presence of open-habitat grasses in Lower Maragheh (as in Turolian localities from Anatolia). Our results demonstrate a more diverse dietary spectrum of the large herbivorous mammals from Maragheh as compared with those from Pikermi, with the presence of true grazers (e.g., Cremohipparion matthewi and Iranotherium) in addition to dominant mixed-feeders and grass-dominated feeders (most species of bovids, giraffids and rhinos) and less abundant browsers (Ancylotherium, Bohlinia, Palaeotragus, Miotragocerus, Oioceros and Criotherium) (Table 2). Of the elephantoid proboscideans, Choerolophodon pentelici was abundant showing mesowear angles that indicate grazing diet, while browsing Konobelodon atticus was present but less abundant (Table 3). In contrast to Pikermi, browsing Mammut indet. was absent from Maragheh.

Kurtén argued for forest-dominated environments in central Europe, although the example cases he mentioned are mostly earlier Late Miocene (Vallesian) localites such as Eppelsheim in Germany (Kurtén 1952). In our completely new ecometric analyses of a few key Turolian localities from central and western Europe (Dorn-Dürkheim 1 in Germany, Kohfidisch in Austria, and Mt. Luberon in southern France), those localites clustered together with Pikermi, Yushe-hounao and Białowieża Forest (the closest modern analogue), broadly representing various "temperate forest equivalent" paleoenvironments. However, the mesowear-based estimates of woody plant cover indicated some interesting differences. Wood cover estimates (AP%) for Dorn-Dürkheim 1 and Kohfidisch were high (ca. 77% and ca. 85%, respectively), whereas for Mt. Luberon AP% it was much lower (ca. 39%). The above AP% estimates for Dorn-Dürkheim 1 and Kohfidisch indicate forest-dominated environments, while Mt. Luberon was probably more of an open woodland, shrubland or savanna-like environment. To some extent this may reflect the present-day conditions with southern France differing notably from Germany by having a more Mediterranean climate and predominantly more open environments, although this is not clear from the climatic estimates, and heavy human influence today should be noted.

The climatic and plant community structure estimates for Dorn-Dürkheim 1 were quite similar to those for Pikermi, however with higher precipitation and NPP estimates. They indicate predominantly humid forest or woodland environment, with possibly some more open and grassy areas in Dorn-Dürkheim 1, broadly corresponding with previously published interpretations of the paleoenvironment (Franzen 2013, Costeur et al. 2013). Dorn-Dürkheim 1 has been considered unique in being the only Turolian fossil mammal locality in Germany, and "the best known European site of this age that represents a wooded environment" (Franzen 2013: 111). Several features of the mammal fauna indicate a humid, forested paleoenvironment, such as the last records of tapirs (Tapirus and Tapiriscus) and chalicotheres (Anisodon) in the Miocene fossil record from Europe, and abundance of deer (Franzen 1997, 2013). However, Costeur et al. (2013) argued for a more open, savanna-like paleoenvironment in Dorn-Dürkheim 1, based on cenogram analysis. Our results indicate a predominantly humid, forested environment, but the mesowear-based woody cover and grass cover estimates indicate presence of some open habitats and grasses as well. Presence of wetland environments in Dorn-Dürkheim 1, supported by high diversity of fossil beavers (Castoridae), has also been discussed (Costeur et al. 2013), and it is possible that open, grassy areas at Dorn-Dürkheim 1 represent wetlands rather than dry open habitats. This interpretation is supported by our results indicating a predominantly humid, wooded environment with some open habitats. Mesowear analysis clustered most ungulates from Dorn-Dürkheim 1 with extant browsers, and Hippotherium primigenium with extant browse-dominated mixed-feeders. Mesowear angle analysis indicates browse-dominated diets for the elephantoid proboscideans Anancus lehmanni and Tetralophodon longirostris.

For Kohfidisch we found a combination of highest relative NDVI and AP% estimates, but lower estimated precipitation and NPP than for Dorn-Dürkheim 1 and the lowest annual temperature estimate for the Miocene localities studied here, associating it closest with the extant temperate forest sites (especially Białowieża Forest). However, as discussed above, the temperature estimates for the Miocene European localities based on dental ecometrics are probably underestimates, likely resulting from non-analogue trait-environment associations in the Miocene. Nonetheless, the vegetation type estimates are again generally similar to estimates derived from other proxies. Hofmann and Zetter (2005) presented a detailed paleoenvironmental reconstruction from the geographically adjacent paleobotanical site of Badensdorf, Austria, which they consider contemporaneous with Kohfidisch. Based on the paleobotanical evidence, the local vegetation was dominated by a swamp forest with Glyptostrobus, Nvssa and other warm temperate to subtropical wetland trees. The swamp forest was surrounded by a more xeric forest, characterized by conifers (e.g., Sequoia, Tsuga, Abies, Pinus, Picea and Cedrus) as well as deciduous angiosperm trees (Buxus, Fagus, Castanea, Eucommia and Tilia), maidenhair trees (Gingko) and smaller amounts of mostly non-grass herbaceous taxa (e.g., Plantago and Artemisia). A minor element of meadow vegetation (e.g., Rumex, Impatiens, Valeriana, Cyperaceae and Poaceae) was present in the vicinity. These interpretations of the local vegetation community correspond with the estimates for Kohfidisch based on mammalian ecometrics and mesowear, which indicate a closed but not humid temperate forest environment. The mesowear analysis of the ungulates from Kohfidisch clustered all the species with extant browsers, making it the most browser-dominated of all the localities studied here. Perhaps surprisingly, the ungulate fauna is dominated by browsing bovids, although cervids are also diverse. The only proboscidean represented in Kohfidisch is Deinotherium. Deinotheres were consistently canopy-level browsers across their temporal and spatial range (e.g., Harris 1975, Markov et al. 2001, Calandra et al. 2008, Saarinen et al. 2015, Xafis et al. 2020, Saarinen & Lister 2023).

The dental ecometric estimates from Mt. Luberon, France, indicate a broad association with temperate forests, but the ungulate mesowear signal indicates a relatively high proportion of open, grassy vegetation. This is mostly driven by the abundant hipparionine *Hipparion prostylum*, which shows a grazing mesowear signal in Mt. Luberon. It should be noted that the large herbivorous mammal assemblage from Mt. Luberon is represented by only six species, with mesowear data for only three of them, making the paleoenvironmental interpretation for this locality tentative at best. However, the close association with Pikermi seems plausible.

Finally, the East African example localities, Lothagam (Lower Nawata) and Lukeino show clear differences to the Eurasian Late Miocene localities in terms of dental ecometric estimates (overall higher temperature and NPP estimates, and comparative higher proportion of large herbivorous mammals with structurally fortified and bunodont dentitions). Lothagam (Lower Nawata) clusters ecometrically with extant East African savanna national parks, such as Meru, Samburu Hills, Serengeti and the more wooded Aberdare. The woody cover estimate based on ungulate mesowear (ca. 40% AP) and the very high grass% estimate (ca. 50%) are consistent with an interpretation of a wooded grassland savanna at Lothagam during the Late Miocene. Other paleoenvironmental proxies support this interpretation, for example stable carbon isotope analyses from soil carbonates indicate the presence of 20%-70% (average 48%) C4 vegetation (grasses) at Lower Nawata Formation at Lothagam (Uno et al. 2011). The mesowear analyses indicate grazing diets for many of the large herbivorous mammals in Lothagam, including alcelaphine bovids, the rhinoceros Brachypotherium lewisi, the hipparionine equids Eurygnathohippus feibeli and Sivalhippus turkanense and the elephantoid proboscideans (Primelephas, Stegotetrabelodon and Anancus).

In contrast, Lukeino shows higher precipitation and NPP estimates, and lower temperature estimate, clustering it with extant African tropical forests and the tropical forest-wetland mosaic of Kaziranga National Park, India. Mesowearbased estimates indicate a relatively high woody plant cover (ca. 60% AP) and low grass% (ca. 16%), consistent with an overall interpretation of a predominantly wooded environment with some more open, grassy vegetation, which could represent either wetland or dryer open habitats. These interpretations are supported by paleobotanical analyses. Bamford et al.'s (2013) analysis of fossil leaves supported the presence of a humid forest or woodland in Lukeino, and stable carbon isotope analyses of Plummer et al. (1999) indicated scarcity of C4 plants at that locality. This is further confirmed by the presence of forest-indicating faunal elements, such as chalicotheres and cephalophine bovids in the Lukeino mammal assemblage. The limited mesowear data we had for ungulates from Lukeino clustered with extant browsing and browse-dominated ungulate species. Mesowear angle analyses of elephantoid proboscideans from Lukeino similarly showed browse-dominated dietary signal for all the species, including Anancus kenyensis, Loxodonta cookei and Mammuthus subplanifrons. The mesowear-based interpretations of browse-dominated diets for the large herbivores from Lukeino are supported by stable isotope analyses, which indicate mostly C3-plant based diets (Roche et al. 2013).

One "indicator taxon" considered in the context of the paleoenvironmental interpretations could be the deinotheriid proboscideans. Deinotheriids had browsing diets throughout their history, and their ecological role as canopy-level leaf browsers (e.g., Harris 1975, Markov et al. 2001, Calandra et al. 2008) suggests that they were mostly associated with relatively wooded paleoenvironments. This study suggests that while deinotheres were widely present in the Late Miocene localities (missing only from the Chinese localities in our case), their relative abundance was related to the paleoenvironmental patterns we observed. Deinothere fossils are relatively abundant in the fossil records from the wooded paleoenvironments of Kohfidisch (where they are in fact the only proboscideans) and Dorn-Dürkheim 1, less abundant in Maragheh and Pikermi, and very scarce in Lothagam.

We encountered some challenges in our studies. Our analyses indicated some non-analogue trait–environment associations in the Late Miocene, particularly regarding temperature estimates (for further discussion of non-analogue ecometric associations in the past and on separate continents *see* also Wilson & Saarinen 2024). While mesowear analyses offer a robust method for paleodietary analyses, they ideally require data for several specimens per species or population. Here, however, this was not the case for all the species in the fossil assemblages, as mesowear data for some species were from single specimens. However, we decided to include those data in our community-level mesowear analyses, as long as most of the species from the communities were represented by more than one specimen. Finally, interpretation of the results from the ungulate mesowear-based woody plant cover estimates should be interpreted with care, as browse-dominated diets do not necessarily indicate high tree cover, only lack of grass-dominated vegetation, and thus their interpretation should depend on the context and additional environmental proxies, such as the dental ecometrics-based estimates of plant community properties. It has been argued that the proportion of grazers vs. browsers in Africa today does not reflect patterns of tree cover, and grazers can be abundant in environments with high tree cover when there is plenty of grassy undergrowth (Negash & Barr 2023, Sokolowski et al. 2023). However, this result is based on broad characterization of species into dietary classes, and does not take into account intraspecific (or intrageneric) dietary variation, which as we demonstrate for the Miocene ungulates, can be considerable, especially among ecologically flexible, dietarily non-selective taxa such as elephantoid proboscideans. Even the dietary signal of equids of the genus Equus, one of the most grazing-adapted genera in existence, has been shown to vary considerably in the past, being related to local vegetation patterns (e.g., Rivals et al. 2015, Saarinen et al. 2021b, Uzunidis 2021, Cirilli et al. 2022).

In summary, the new ecometric estimates of later Late Miocene (Turolian and equivalent) localities from Eurasia and Africa reflect a considerable diversity of paleoenviroments and climatic zones from tropical forests and grassland savannas to warm temperate woodlands, temperate woodland–grassland mosaics and dry steppes, thus demonstrating considerable variation in the environmental conditions of the *"Hipparion* faunas". It is interesting to note that while analysis of faunal similarity indicated the presence of a large, more or less uniform biogeographic zone called the "Old World savannah paleobiome" from East Africa to eastern Asia during the Late Miocene (Kaya et al. 2018), there was remarkable ecometric, paleoecological and paleonvironmental variation within this realm. This is in agreement with paleoenvironmental inferences from other proxies (e.g., Kurtén 1952, Solounias et al. 1999, 2010, Denk et al. 2018). This is not to say that the interpretation of Kaya et al. (2018) of a coherent Old World savannah paleobiome is wrong, it just refers to an environmentally diverse biogeographic zone with similar faunal elements. Indeed the authors themselves have clarified that the concept of OWSP refers to a diverse set of environments that were "savanna-like" in a very broad sense (Fortelius et al. 2019a). While the traits of the herbivorous mammals only reflect the part of the vegetation that the herbivorous mammals consume, thus not providing information on all details of the plant community, averaged trait conditions within the communities reflect broad properties of the plant communities (Fortelius et al. 2019b). In fact, we do find differences both in the ecometric trait distribution and dietary signal of the large herbivorous mammals that reflect considerable paleoenvironmental differences between localities considered to be part of the OWSP, such as Pikermi and Maragheh. Indeed, in several genera of large mammals that are present across this vast area, such as bovids of the genera Tragoportax and Gazella, and proboscideans of the genus Anancus, ecometric and mesowear analyses indicate remarkable paleoecological variation between species and populations. For example, mesowear of Gazella and Tragoportax indicate browse-dominated diets in Pikermi but more grass-dominated mixed-feeding in Maragheh, whereas hipparionine equids were browse-dominated feeders in Dorn-Dürkheim 1, mixed-feeders in Pikermi, more grass-dominated in Maragheh and grazers in Lothagam (Lower Nawata). Some taxa, such as Gazella, also show considerable variation in functional traits such as hypsodonty across their range in the Late Miocene, as already noted by Kurtén (1952). The diets of proboscideans, especially elephantoids, are shown to vary a lot according to locally available vegetation, and this is clearly seen in the Late Miocene proboscideans as well. Most strikingly this is demonstrated in East Africa, where the proboscideans show remarkable dietary difference between Lothagam and Lukeino, even intraspecifially with *Primelephas* and *Anancus* being browse-dominated feeders in Lukeino and grass-dominated feeders in Lothagam (Saarinen & Lister 2023, and this study).

Conclusions

Large amounts of paleontological and paleoenvironmental information, based on a wide range of analytical methods, have accumulated since Björn Kurtén published his early work on paleoenvironmental implications of large mammals and their ecomorphological traits (Kurtén 1952, 1968). The mammalian fossil record has provided material and techniques for paleoenvironmental interpretation, including analyses of community structure, stable isotopes, ecomorphology, dental and postcranial functional traits, dental wear as an indicator of diet and environments, and body size variation and body size distribution within mammal communities. As a result, our understanding of interactions and relationships between mammals, vegetation and climate in the present and the past has broadened and provided further understanding of macroevolutionary and macroecological mechanisms, biotic interactions in the absence of human influence on the biosphere and even conditions of human evolution and dispersal history. Challenges for the future include non-analogue trait-environment relationships in the past, which require looking into models based on deep-time proxy comparisons, especially the further back in time the analyses are extended.

On the other hand, many of the basic principles of the relationships between mammals and their environments in the present and in the past were already well known to Kurtén during his career. In this paper, we provided a revision of a few key "*Hipparion* fauna" localities from the later Late Miocene of the Old World based on recently developed dental ecometric and dietary analyses of fossil herbivorous mammal communities. While we present new quantitative estimates of climatic and plant community structure properties in the paleoenvironments, we note

that Kurtén was on the right track in the interpretations in his Master's thesis (Kurtén 1952). He suggested a presence of a steppe-forest transition zone in northern China, wooded paleoenvironments in Pikermi and central Europe, and a more open environment in Maragheh during the Late Miocene. Our new results further demonstrate that biomes during the Late Miocene across the Old World were diverse, ranging from tropical forests and savannas in Africa to temperate forests, savannas and steppes in Eurasia.

Acknowledgements

We thank several museums for granting access to their collections to collect data for this work, including Natural History Museum of London, UK, Museum National d'Histoire Naturelle, Paris, France, Naturhistorisches Museum Wien and University of Vienna, Austria, Senckenberg Museum, Frankfurt, Germany, Bayerische Staatssamlung für Paläontologie, Munich, Germany, and National Museums of Kenya, Nairobi, Kenya. We thank curators and collection managers for help, including Spyridoula Pappa and Pip Brewer (NHMUK), Guillaume Billet and Christine Argot (MNHN), Ursula Göhlich (NHMW), Doris Nagel (UW), Christine Hemm and Ottmar Kullmer (SMF), Gertrud Rössner (BSP) and Job Kibii, Emmanuel Ndiema, Pauline Mbatha, Jimmy Yatich and Cecilia Kanyua (NMK). We thank two anonymous reviewers for their comments which helped us improve our work. This work was supported by the Research Council of Finland projects no. 340775/346292 and 341620.

References

- Ackermans, N. L. 2020: The history of mesowear: a review. — PeerJ 8, e8519, https://doi.org/10.7717/peerj.8519.
- Alroy, J. 1998: Cope's rule and the dynamics of body mass evolution in North American fossil mammals. — Science 280: 731–734, https://doi.org/10.1126/science.280.5364.731.
- Alroy, J. 2000: New methods for quantifying macroevolutionary patterns and processes. — *Paleobiology* 26: 707–733, https://doi.org/10.1666/0094-8373(2000)026<0707: NMFQMP>2.0.CO;2.
- Argant, J. 2004: Le gisement pliocène final de Saint-Vallier (Drôme, France): palynologie. — *Geobios* 37: 81–90.
- Arppe, L., Karhu, J. A. & Vartanyan, S. L. 2009: Bioapatite ⁸⁷Sr/⁸⁶Sr of the last woolly mammoths — implications for the isolation of Wrangel Island. — *Geology* 37: 347–350, https://doi.org/10.1130/G25467A.1.
- Ataabadi, M. M., Bernor, R., Kostopolus, D., Wolf, D., Orak, Z., Zaree, G., Nakaya, H., Watabe, M. & Fortelius, M. 2013: Recent advances on paleobiological research of the Late Miocene Maragheh Fauna, northwest Iran. —

In: Wang, X., Fortelius, M. & Flynn, L. (eds.), *Asian Neogene mammal biostratigraphy and chronology*: 546– 565. Columbia University Press.

- Bakhia, A. 2022: Environment reincarnated paleodiet and paleoecology of Pleistocene herbivorous mammals from Dmanisi. — M.Sc. thesis, University of Helsinki, http:// hdl.handle.net/10138/350944.
- Bamford, M. K., Senut, B. & Pickford, M. 2013: Fossil leaves from Lukeino, a 6-million-year-old formation in the Baringo Basin, Kenya. — *Geobios* 46: 253–272, https://doi.org/10.1016/j.geobios.2013.02.001.
- Barbet, P. 2006: Approche taphonomique du site pliocène terminal de Chilhac (Haute-Loire, France) et étude paléontologique des Cervidae. — Ph.D. thesis, Muséum National d'Histoire Naturelle, Paris.
- Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. 2004: Assessing the causes of Late Pleistocene extinctions on the continents. — *Science* 306: 70–75, https://doi.org/10.1126/science.1101476.
- Barr, W. A. 2014: Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology. — *Journal of Morphology* 275: 1201–1216, https://doi.org/10.1002/jmor.20279.
- Barr, W. A. 2017: Bovid locomotor functional trait distributions reflect land cover and annual precipitation in subSaharan Africa. — *Evolutionary Ecology Research* 18: 253–269.
- Belmaker, M. & O'Brien, H. D. 2018: Mesowear study of ungulates from the Early Pleistocene site of 'Ubeidiya (Israel) and the implications for early *Homo* dispersal from Africa. — *Quaternary International* 480: 66–77.
- Bergmann, C. 1847: Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. — Göttinger Studien 3: 595–708.
- Bernor, R. L., Semprebon, G. & Damuth, J. 2014: Maragheh ungulate mesowear: interpreting paleodiet and paleoecology from a diverse fauna with restricted sample sizes. — *Annales Zoologici Fennici* 51: 201–208, https:// doi.org/10.5735/086.051.0220.
- Bernor, R. L., Kaya, F., Kaakinen, A., Saarinen, J. & Fortelius, M. 2021: Old World *Hipparion* evolution, biogeography, climatology and ecology. — *Earth Science Reviews* 221, 103784, https://doi.org/10.1016/j.earscirev.2021.103784.
- Blumenthal, S. A., Levin, N. E., Brown, F. H., Brugal, J.-P., Chritz, K. L., Harris, J. M., Jehle, G. E. & Cerling, T. E. 2017: Aridity and hominin environments. — Proceedings of the National Academy of Sciences of the United States of America 114: 7331–7336, https://doi. org/10.1073/pnas.1700597114.
- Bocherens, H. 2003: Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. — *Deinsea* 9: 57–76.
- Bocherens, H. 2015: Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. — *Quaternary Science Reviews* 117: 42–71, https://doi.org/10.1016/j. quascirev.2015.03.018.
- Bruch, A. A., Utescher, T., Mosbrugger, V., Gabrielyan, I. & Ivanov, D. A. 2006: Late Miocene climate in the circum-Alpine realm — a quantitative analysis of

terrestrial palaeofloras. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 238: 270–280, https://doi. org/10.1016/j.palaeo.2006.03.028.

- Bruch, A. A., Uhl, D. & Mosbrugger, V. 2007: Miocene climate in Europe — patterns and evolution. A first synthesis of NECLIME. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 253, https://doi.org/10.1016/j. palaeo.2007.03.030.
- Butler, K., Louys, J. & Travouillon, K. 2014: Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from southeast Queensland. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 408: 11–25, https://doi. org/10.1016/j.palaeo.2014.04.024.
- Calandra, I., Göhlich, U. B. & Merceron, G. 2008: How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. — *Naturwissenschaften* 95: 831–838.
- Cantalapiedra, J. L., Prado, J. L., Fernández, M. H. & Alberdi, M. T. 2017: Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. — *Science* 355: 627–630, https://doi.org/10.1126/science.aag177.
- Cantalapiedra, J. L., Sanisidro, O., Zhang, H., Alberdi, M. T., Prado, J. L., Blanco, F. & Saarinen, J. 2021: The rise and fall of proboscidean ecological diversity. — *Nature Ecology & Evolution* 5: 1266–1272.
- Casanovas-Vilar, I., van den Hoek-Ostende, L., Janis, C. & Saarinen, J. (eds.) 2023: Evolution of Cenozoic land mammal faunas and ecosystems — 25 years of the NOW database of fossil mammals. — Vertebrate Paleobiology and Paleoanthropology, Springer, Cham, https://doi. org/10.1007/978-3-031-17491-9.
- Cerling, T., Harris, J., MacFadden, B., Leakey, M.G., Quade, J., Eisenmann, V. & Ehleringer, J. R. 1997: Global vegetation change through the Miocene/Pliocene boundary. *— Nature* 389: 153–158.
- Cerling, T., Harris J. & Leakey, M. 1999: Browsing and grazing in elephants: The isotope record of modern and fossil proboscideans. — *Oecologia* 120: 364–374.
- Cerling, T. & Harris, J. 1999: Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. — Oecologia 120: 347–363.
- Choquenot, D. 1991: Density-dependent growth, body condition, and demography in feral donkeys: Testing the food hypothesis. — *Ecology* 72: 805–813.
- Cirilli, O., Machado, H., Arroyo-Cabrales, J., Barrón-Ortiz, C. I., Davis, E., Jass, C. N., Jukar, A. M., Landry, Z., Marín-Leyva, A. H., Pandolfi, L., Pushkina, D., Rook, L., Saarinen, J., Scott, E., Semprebon, G., Strani, F., Villavicencio, N. A., Kaya, F. & Bernor, R. L. 2022: Evolution of the family Equidae, subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene. — *Biology* 11, 1258, https:// doi.org/10.3390/biology11091258.
- Cirilli, O., Saarinen, J., Bukhsianidze, M., Lordkipanidze, D. & Bernor, R. 2023: *Equus suessenbornensis* from Akhalkalaki (Georgia, Caucasus): a review with new insights on the paleoecology, paleobiogeography and

evolution of the Palearctic large-sized equids during the Early — Middle Pleistocene Transition. — *Quaternary Science Reviews* 314, 108188, https://doi.org/10.1016/j. quascirev.2023.108188.

- Cirilli, O., Saarinen, J. & Bernor, R. 2024: Lost in the collections. A critical re-appraisal on *Equus major* provides a new perspective on the paleobiogeography of the Plio-Pleistocene European equids and on the *Equus* Datum. *Quaternary Science Reviews* 323, 108428, https://doi.org/10.1016/j.quascirev.2023.108428.
- Costeur, L., Maridet, O., Montuire, S. & Legendre, S. 2013: Evidence of northern Turolian savanna-woodland from the Dorn-Dürkheim 1 fauna (Germany). — Paleobiodiversity and Paleoenvironments 93: 259–275.
- Croft, D. A. & Weinstein, D. 2008: The first application of the mesowear method to endemic South American ungulates (Notoungulata). — *Palaeogeography, Palaeoclimatology, Palaeoecology* 269: 103–114, https://doi. org/10.1016/j.palaeo.2008.08.007.
- Cuvier, G. 1804: Des animaux qui diffèrent du Palaeotherium pour le genre, mais qui sont de même ordre, et particulièrement du genre Anoplotherium, et de ses espèces. — Annales du Muséum National d'Histoire Naturelle, Paris 3: 370–382.
- Cuvier, G., Vallentin, R., Latreille, P. A. & MacMurtrie, H. 1834: The Animal Kingdom, arranged according to its organization: Serving as a foundation for the natural history of animals, and an introduction to contemporary anatomy. — G. Henderson, London, UK.
- Damuth, J. & Janis, C. M. 2011: On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. — *Biological Reviews* 86: 733–758, https://doi.org/10.1111/j.1469-185X.2011.00176.x.
- Deniro, M. J. & Epstein, S. 1981: Influence of diet on the distribution of nitrogen isotopes in animals. — Geochimica et Cosmochimica Acta 45: 341–351, https://doi. org/10.1016/0016-7037(81)90244-1.
- Denk, T., Zohner, C. M., Grimm, G. W. & Renner, S. S. 2018: Plant fossils reveal major biomes occupied by the Late Miocene Old-World Pikermian fauna. — *Nature Ecology & Evolution* 2: 1864–1870, https://doi. org/10.1038/s41559-018-0695-z.
- Eronen, J. T., Puolamaki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C. M. & Fortelius, M. 2010a: Precipitation and large herbivorous mammals I: Estimates from present-day communities. — *Evolutionary Ecology Research* 12: 217–233.
- Eronen, J. T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C. M. & Fortelius, M. 2010b: Precipitation and large herbivorous mammals II: application to fossil data. — *Evolutionary Ecology Research* 12: 235–248.
- Eronen, J. T., Fortelius, M., Micheels, A., Portmann, F. T., Puolamäki, K. & Janis, C. M. 2012: Neogene aridification of the northern hemisphere. — *Geology* 40: 823–826.
- Eronen, J. T., Kaakinen, A., Liu, L., Passey, B. H., Tang, H. & Zhang, Z. 2014: Here be dragons: Mesowear and tooth enamel isotopes of the classic Chinese "*Hip*-

parion" faunas from Baode, Shanxi Province, China. — Annales Zoologici Fennici 51: 227–244, https://doi. org/10.5735/086.051.0222.

- Eronen, J. T., Janis, C. M., Chamberlain, C. P. & Mulch, A. 2015: Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe. — *Proceedings of the Royal Society B* 282, 20150136, https://doi. org/10.1098/rspb.2015.0136.
- Escarguel, G., Legendre, S. & Sigé, B. 2008: Unearthing deeptime biodiversity changes: the Palaeogene mammalian metacommunity of the Quercy and Limagne area (Massif Central, France). — *Comptes Rendus Geoscience* 340: 602–614.
- Farquhar, G., Ehleringer, J. & Hubick, K. 1989: Carbon istotope fractionation and plant water use efficiency. — In: Rundel, P. W., Ehleringer, J. R. & Nagy, K. A. (eds.), *Stable isotopes in ecological research*: 21–40. Springer Verlag, New York.
- Fortelius, M. 1985: Ungulate cheek teeth: developmental, functional and evolutionary interrelations. — Acta Zoologica Fennica 180: 1–76.
- Fortelius, M. & Solounias, N. 2000: Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. — *American Museum Novitates* 3301: 1–35.
- Fortelius, M., Bibi, F., Tang, H., Žliobaitė, I., Eronen, J. T. & Kaya, F. 2019a: The nature of the Old World savannah palaeobiome. — *Nature Ecology & Evolution* 3, 504, https://doi.org/10.1038/s41559-019-0857-7.
- Fortelius, M., Bibi, F., Tang, H., Žliobaitė, I., Eronen, J. T. & Kaya, F. 2019b: The painting on the wall: what's the matter with dental ecometrics? — *Springer Nature Research Communities*, https://communities.springernature.com/posts/the-painting-on-the-wall-what-s-the-matter-with-dental-ecometrics.
- Fortelius, M., Eronen, J. T., Liu, L., Pushkina, D., Tesakov, A., Vislobokova, I. & Zhang, Z. 2006: Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 238: 219–227.
- Fortelius, M., Eronen, J. T., Jernvall, J., Liu, L, Pushkina, D., Rinne, J., Tesakov, A., Vislobokova, I., Zhang, Z. & Zhou, L. 2002: Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. — *Evolutionary Ecology Research* 4: 1005–1016.
- Fortelius, M., Žliobaitė, I., Kaya, F., Bibi, F., Bobe, R., Leakey, L., Leakey, M., Patterson, D., Rannikko, J. & Werdelin, L. 2016: An ecometric analysis of the fossil mammal record of the Turkana Basin. — *Philosophical Transactions of the Royal Society B* 371: 1–13, https:// doi.org/10.1098/rstb.2015.0232.
- Franzen, J. L. 1997: Erforschungsgeschichte, Geologie und Entstehung der Fossillagerstätte Dorn-Dürkheim. — Courier Forschungsinstitut Senckenberg 197: 5–10.
- Franzen, J. L. 2013: The fossil lagerstaette Dorn-Dürkheim. — Paleobiodiversity and Palaeoenvironments 93: 111– 120, https://doi.org/10.1007/s12549-013-0114-z.
- Fraser, D. & Theodor, T. 2010: The use of gross dental wear in dietary studies of extinct lagomorphs. — *Journal of Pale-*

ontology 84, 720729, https://doi.org/10.1666/09-066.1.

- Fraser, D., Zybutz, T., Lightner, E. & Theodor, J. M. 2014: Ruminant mandibular tooth mesowear: a new scheme for increasing paleoecological sample sizes. — *Journal* of Zoology 294: 41–44, https://doi.org/10.1111/jzo.12149.
- Galbrun, E., Tang, H., Fortelius, M. & Žliobaitė, I. 2018: Computational biomes: the ecometrics of large mammal teeth. — *Palaeontologia Electronica* 21, 21.1.3A, https:// doi.org/10.26879/786.
- Geist, V. 1987: Bergmann's rule is invalid. Canadian Journal of Zoology 65: 1035–1038.
- Gruwier, B. J. & Kovarovic, K. 2022: Ecomorphology of the cervid calcaneus as a proxy for paleoenvironmental reconstruction. — *Anatomical Record* 305: 2207–2226.
- Hare, V. J., Loftus, E., Jeffrey, A. & Ramsey, C. B. 2018: Atmospheric CO₂ effect on stable carbon isotope composition of terrestrial fossil archives. — *Nature Communications* 9, 252, https://doi.org/10.1038/s41467-017-02691-x.
- Harris, J. M. 1975: Evolution of feeding mechanisms in the family Deinotheriidae (Mammalia: Proboscidea). — Zoological Journal of the Linnean Society 56: 331–362.
- Hemmingsen, A. M. 1960: Energy metabolism as related to body size and respiratory surfaces, and its evolution. — Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium 9: 6–110.
- Hernesniemi, E., Blomstedt, K. & Fortelius, M. 2011: Multiview stereo three-dimensional reconstruction of lower molars of Recent and Pleistocene rhinoceroses for mesowear analysis. — *Palaeontologia Electronica* 14.2.2T, https://palaeo-electronica.org/2011_2/246/246.pdf.
- Hofmann, C. C. & Zetter, R. 2005: Reconstruction of different wetland plant habitats of the Pannonian Basin System (Neogene, eastern Austria). — *PALAIOS* 20: 266–279, https://doi.org/10.2110/palo.2002.p02-22.
- Hoppe, K. A. & Koch, P. L. 2007: Reconstructing the migration patterns of Late Pleistocene mammals from northern Florida, USA. — *Quaternary Research* 68: 347–352, https://doi.org/10.1016/j.yqres.2007.08.001.
- Huang, S., Saarinen, J., Eyres, A., Eronen, J. T. & Fritz, S. A. 2022: Mammalian body size evolution was shaped by habitat transitions as an indirect effect of climate change. — *Global Ecology and Biogeography* 31: 2463–2474, https://doi.org/10.1111/geb.13594.
- Huang, S., Eyres, A., Fritz, S., Eronen, J. T. & Saarinen, J. 2023: Environmental change and body size evolution in Neogene large mammals. — In: Casanovas-Vilar, I., van den Hoek-Ostende, L., Janis, C. & Saarinen, J. (eds.), Evolution of Cenozoic land mammal faunas and ecosystems — 25 years of the NOW database of fossil mammals: 79–93. Vertebrate Paleobiology and Paleoanthropology, Springer, Cham, https://doi.org/10.1007/978-3-031-17491-9 6.
- Janis, C. M. & Fortelius, M. 1988: On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. — *Biological Reviews* 63: 197–230.
- Janis, C. M. & Bernor, R. L. 2019: The evolution of equid monodactyly: a review including a new hypothesis. — *Frontiers in Ecology and Evolution* 7, 119, https://doi.

org/10.3389/fevo.2019.00119.

- Jokela, T. 2015: The high, the sharp and the rounded: paleodiet and paleoecology of Late Miocene herbivorous mammals from Greece and Iran. — M.Sc. thesis, University of Helsinki, http://hdl.handle.net/10138/157574.
- Kaakinen, A., Passey, B. H., Zhang, Z., Liu, L., Pesonen, L. J. & Fortelius, M. 2013: Stratigraphy and paleoecology of the classical dragon bone localities of Baode County, Shanxi Province. — In: Wang. X., Fortelius, M. & Flynn, L. (eds.), Asian Neogene mammal biostratigraphy and chronology: 203–217. Columbia University Press.
- Kaiser, T. M., Müller, D. W. H., Fortelius, M., Schulz, E., Codron, D. & Clauss, M. 2013: Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. — *Mammal Review* 43: 34–46, https://doi. org/10.1111/j.1365-2907.2011.00203.x.
- Kaji, K., Otaishi, N., Miura, S. & Wu, J. 1989: Distribution and status of white-lipped deer (*Cervus albirostris*) in the Qinghai-Xizang (Tibet) Plateau, China. — *Mammal Review* 19: 35–44.
- Kaya, F., Bibi, F., Žliobaitė, I., Eronen, J. T., Hui, T. & Fortelius, M. 2018: The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. *— Nature Ecology & Evolution* 2: 241–246.
- Kingston, J. D. & Harrison, T. 2007: Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology. — Palaeogeography, Palaeoclimatology, Palaeoecology 243: 272–306, https://doi.org/10.1016/j.palaeo.2006.08.002.
- Kingston, J. D. 2011: Stable isotopic analysis of fossil Laetoli herbivores. — In: Harrison, T. (ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology, and paleoenvironments: 293–328. Springer, New York.
- Koch, P. L. & Barnosky, A. D. 2006: Late Quaternary extinctions: state of the debate. — Annual Review of Ecology, Evolution and Systematics 37: 215–250, https://doi. org/10.1146/annurev.ecolsys.34.011802.132415.
- Kostopoulos, D. S. 2009: The Pikermian Event: temporal and spatial resolution of the Turolian large mammal fauna in SE Europe. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 274: 82–95, https://doi.org/10.1016/j.palaeo. 2008.12.020.
- Kovarovic, K. & Andrews, P. 2007: Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. — Journal of Human Evolution 52: 663–680, https://doi. org/10.1016/j.jhevol.2007.01.001.
- Kropacheva, Y. E., Sibiryakov, P. A., Smirnov, N. G. & Zykov, S. V. 2017: Variants of tooth mesowear in *Microtus* voles as indicators of food hardness and abrasiveness. — *Russian Journal of Ecology* 48: 73–80, https:// doi.org/10.1134/S1067413616060096.
- Kubo, M. O. & Yamada, E. 2014: The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations. — *PloS ONE* 9(3), e90745, https://doi.org/10.1371/journal. pone.0090745.

Kurtén, B. 1952: The Chinese Hipparion fauna. - Com-

mentationes Biologicae, Societas Scientiarum Fennicae 13: 1–82.

- Kurtén, B. 1968: Pleistocene mammals of Europe. Aldine Publishing Co., Chicago.
- Lartet, E. 1851: *Notice sur la Colline de Sansan.* Annuaire du Department du Gers.
- Lee-Thorp, J. & van der Merwe, N. J. 1987: Carbon isotope analysis of fossil bone apatite. — *South African Journal* of Science 83: 712–715.
- Legendre, S. 1986: Analysis of mammalian communities from the late Eocene and Oligocene of southern France. — Palaeovertebrata 16: 191–212.
- Levin, N. E., Cerling, T. E., Passey, B. H. & Ehleringer, J. R. 2006: A stable isotope aridity index for terrestrial environments. — *Proceedings of the National Academy of Sciences of the United States of America* 103: 11201–11205, https://doi.org/10.1073/pnas.0604719103.
- Lindstedt, S. L. & Boyce, M. S. 1985: Seasonality, fasting endurance, and body size in mammals. — *The American Naturalist* 125: 873–878.
- Liu, L., Puolamäki, K., Eronen, J. T., Ataabadi, M. M., Hernesniemi, E. & Fortelius, M. 2012: Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. — *Proceedings of the Royal Society of London B* 279: 2793–2799. https://doi. org/10.1098/rspb.2012.0211.
- Liu, L., Galbrun, E., Tang, H., Kaakinen, A., Zhang, Z., Zhang, Z. & Žliobaitė, I. 2023: The emergence of modern zoogeographic regions in Asia examined through climate-dental trait association patterns. — *Nature Communications* 14, 8194, https://doi.org/10.1038/s41467-023-43807-w.
- Loponen, L. 2020: Diets of Miocene proboscideans from Eurasia, and their connection to environments and vegetation. — M.Sc. thesis, University of Helsinki, http:// hdl.handle.net/10138/318862.
- Madden, R. H. 2015: Hypsodonty in mammals: Evolution, geomorphology, and the role of earth surface processes. — Cambridge University Press, Cambridge.
- Manthi, F. K., Cerling, T. E., Chritz, K. L. & Blumenthal, S. A. 2020: Diets of mammalian fossil fauna from Kanapoi, northwestern Kenya. — *Journal of Human Evolution* 140, 102338, https://doi.org/10.1016/j.jhevol.2017.05.005.
- Markov, G. N., Spassov, N. & Simeonovski, V. 2001: A reconstruction of the facial morphology and feeding behaviour of the deinotheres. — In: Cavaretta, G., Gioia, P., Mussi, M. & Palombo, M. R. (eds.), *The world of elephants*: 652–655. Consiglio Nazionale delle Ricerche, Roma.
- Marsh, O. C. 1879: Polydactyle horses, recent and extinct. American Journal of Science 17: 499–505.
- Matthew, W. D. 1903: The evolution of the horse. American Museum of Natural History, Supplemental American Museum Journal Guide Leaflet 9: 1–30.
- McNab, B. K. 2010: Geographic and temporal correlations of mammalian size reconsidered: a resource rule. — *Oecologia* 164: 13–23.
- Merceron, G., Schulz, E., Kordos, L. & Kaiser, T. M. 2007: Paleoenvironment of *Dryopithecus brancoi* at Rudabánya, Hungary: evidence from dental meso- and

microwear analyses of large vegetarian mammals. — *Journal of Human Evolution* 53: 331–349, https://doi. org/10.1016/j.jhevol.2007.04.008.

- Merceron, G., Novello, A. & Scott, R. S. 2016a: Paleoenvironments inferred from phytoliths and dental microwear texture analyses of meso-herbivores. — *Geobios* 49: 135–146.
- Merceron, G., Ramdarshan, A., Blondel, C., Boisserie, J.-R., Brunetiere, N., Francisco, A., Gautier, D., Milhet, X., Novello, A. & Pret, D. 2016b: Untangling the environmental from the dietary: dust does not matter. — *Proceedings of the Royal Society B* 283(1838), 20161032, https://doi.org/10.1098/rspb.2016.1032.
- Metcalf, J. L., Turney, C., Barnett, R., Martin, F., Bray, S. C., Vilstrup, J. T., Orlando, L., Salas-Gismondi, L., Loponte, D., Menina, M., De Nigris, M., Civalero, T., Fernández, P. M., Gasco, A., Duran, V., Seymour, K. L., Otaola, C., Gil, A., Paunero, R., Prevosti, F. J., Bradshaw, C. J. A., Wheeler, J. C., Borrero, L., Austin, J. J. & Cooper, A. 2016: Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. — *Science Advances* 2(6), https:// doi.org/10.1126/sciadv.1501682.
- Metcalfe, J. Z. & Longstaffe, F. J. 2014: Environmental change and seasonal behavior of mastodons in the Great Lakes region inferred from stable isotope analysis. — *Quaternary Research* 82: 366–377, https://doi. org/10.1016/j.yqres.2014.07.002.
- Metcalfe, J. Z. 2017: Proboscidean isotopic compositions provide insight into ancient humans and their environments. — *Quaternary International* 443(A): 147–159, https://doi.org/10.1016/j.quaint.2016.12.003.
- Mihlbachler, M., Rivals, F., Solounias, N. & Semprebon, G. M. 2011: Dietary change and evolution of horses in North America. — *Science* 331: 1178–1181, https://doi. org/10.1126/science.1196166.
- Negash, E. W. & Barr, W. A. 2023. Relative abundance of grazing and browsing herbivores is not a direct reflection of vegetation structure: Implications for hominin paleoenvironmental reconstruction. — Journal of Human Evolution 177: 103328, https://doi.org/10.1016/j.jhevol. 2023.103328.
- Nomade, S., Pastre, J. F., Guillou, H., Faure, M., Guérin, C., Delson, E., Debard, E., Voinchet, P. & Messager, E. 2014: ⁴⁰Ar/³⁹Ar constraints on some French landmark Late Pliocene to Early Pleistocene large mammalian paleofaunas: Paleoenvironmental and paleoecological implications. — *Quaternary Geochronology* 21: 2–15, https://doi.org/10.1016/j.quageo.2012.12.006.
- O'Brien, T. G. & Kinnaird, M. F. 1996: Birds and mammals of the Bukit Barisan Selatan National Park, Sumatra, Indonesia. — *Oryx* 30: 207–217.
- Oksanen, O., Žliobaitė, I., Saarinen, J., Lawing, A. M. & Fortelius, M. 2019: A Humboldtian approach to life and climate of the geological past: estimating palaeotemperature from dental traits of mammalian communities. *— Journal of Biogeography* 46: 1760–1776, https://doi. org/10.1111/jbi.13586.
- Otaishi, N. & Gao, Y. 1990: A review of the distribution of all species of deer (Tragulidae, Moschidae and Cervidae) in

China. — Mammal Review 20: 125-144.

- Passey, B. H., Eronen, J. T., Fortelius, M. & Zhang, Z. Q. 2007: Paleodiets and paleoenvironments of Late Miocene gazelles from north China: evidence from stable carbon isotopes. — *Vertebrata PalAsiatica* 45: 118–127.
- Pederzani, S. & Britton, K. 2019: Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. — *Earth Science Reviews* 188: 77–107, https://doi.org/10.1016/j.earscirev.2018.11.005
- Peters, R. H. 1983: *The ecological implications of body size*. — Cambridge University Press, Cambridge.
- Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. 2019: Synchronous rise of African C₄ ecosystems 10 million years ago in the absence of aridification. — *Nature Geoscience* 12: 657–660, https://doi. org/10.1038/s41561-019-0399-2.
- Polly, P. D. 2010: Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. — In: Goswami, A. & Friscia, A. (eds.), *Carnivoran evolution: New views on phylogeny, form, and function*: 374–410. Cambridge University Press, Cambridge.
- Polly, P. D., Eronen, J. T., Fred, M., Dietl, G. P., Mosbrugger, V., Scheidegger, C., Frank, D. C., Damuth, J., Stenseth, N. C. & Fortelius, M. 2011: History matters: ecometrics and integrative climate change biology. — *Proceedings* of the Royal Society B 278: 1131–1140, https://doi. org/10.1098/rspb.2010.2233.
- Polly, P. D. & Head J. J. 2015: Measuring Earth-life transitions: ecometric analysis of functional traits from late Cenozoic vertebrates. — In: Polly, P. D., Head, J. J. & Fox, D. L. (eds.), *Earth-life transitions: paleobiology in the context of Earth system evolution*: 21–46. The Paleontological Society.
- Plummer, T. W., Bishop, L. C., Ditchfield, P. & Hicks, J. 1999: Research on Late Pliocene Oldowan sites at Kanjera South, Kenya. — *Journal of Human Evolution* 36: 151–170, https://doi.org/10.1006/jhev.1998.0256.
- Plummer, T. W., Bishop, L. C. & Hertel, F. 2008: Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. — *Journal* of Archaeological Science 35: 3016–3027, https://doi. org/10.1016/j.jas.2008.06.015.
- Rivals, F. & Semprebon, G. M. 2006: A comparison of the dietary habits of a large sample of the Pleistocene pronghorn *Stockoceros onusrosagris* from the Papago Springs Cave in Arizona to the modern *Antilocapra americana*. — *Journal of Vertebrate Paleontology* 26: 495–500.
- Rivals, F., Schulz, E. & Kaiser, T. M. 2009: Late and Middle Pleistocene ungulates dietary diversity in Western Europe indicate variations of Neanderthal paleoenvironments through time and space. — *Quaternary Science Reviews* 28: 3388–3400, https://doi.org/10.1016/j. quascirev.2009.09.004.
- Rivals, F., Mihlbachler, M.C., Solounias, N., Mol, D., Semprebon, G. M., de Vos, J. & Kalthoff, D. C. 2010: Palaeoecology of the mammoth steppe fauna from the Late Pleistocene of the North Sea and Alaska: separating species preferences from geographic influence in paleo-

ecological dental wear analysis. — *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology* 286: 42–54, https://doi.org/10.1016/j.palaeo.2009.12.002.

- Rivals, F., Semprebon, G. & Lister, A. M. 2012: An examination of dietary diversity patterns in Pleistocene proboscideans (*Mammuthus*, *Palaeoloxodon*, and *Mammut*) from Europe and North America as revealed by dental microwear. — *Quaternary International* 255: 188–195.
- Rivals, F., Mol, D., Lacombat, F., Lister, A. M. & Semprebon, G. M. 2015. Resource partitioning and niche separation between mammoths (*Mammuthus rumanus* and *Mammuthus meridionalis*) and gomphotheres (*Anancus arvernensis*) in the Early Pleistocene of Europe. — Quaternary International 379: 164–170.
- Rivals, F. & Lister, A. M. 2016: Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. — *Quaternary Science Reviews* 146: 116– 133, https://doi.org/10.1016/j.quascirev.2016.06.007.
- Roche, D., Ségalen, L., Senut, B. & Pickford, M. 2013: Stable isotope analyses of tooth enamel carbonate of large herbivores from the Tugen Hills deposits: Palaeoenvironmental context of the earliest Kenyan hominids. — *Earth and Planetary Science Letters* 381: 39–51, https://doi.org/10.1016/j.epsl.2013.08.021.
- Roger, S., Coulon, C., Thouveny, N., Féraud, G., van Velzen, A., Fauquette, S., Cochemé, J. J., Prévot, M. & Verosub, K. L. 2000: ⁴⁰Ar/³⁹Ar dating of a tephras layer in the Pliocene Senèze maar lacustrine sequence (French Massif Central): constraint on the age of the Reunion-Matuyama transition and implication on paleoenvironmental archives. — *Earth and Planetology Science Letter* 138: 431–440, https://doi. org/10.1016/S0012-821X(00)00285-5.
- Saarinen, J. 2014: Ecometrics of large herbivorous land mammals in relation to climatic and environmental changes during the Pleistocene. — Ph.D. thesis, University of Helsinki, http://hdl.handle.net/10138/144131.
- Saarinen, J. & Karme, A. 2017: Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) — applying a new mesowear approach. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 476: 42–54, https://doi.org/10.1016/j.palaeo.2017.03.027.
- Saarinen, J. & Lister, A. M. 2016: Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. — *Journal of Quaternary Science* 31: 799–808.
- Saarinen, J. & Lister, A. M. 2023: Fluctuating climate and dietary innovation drove ratcheted evolution of proboscidean dental traits. — *Nature Ecology & Evolution* 7: 1490–1502.
- Saarinen, J., Cirilli, O., Strani, F., Meshida, K. & Bernor, R. 2021b: Testing equid body mass estimate equations on modern zebras — with implications to understanding the relationship of body size, diet and habitats of *Equus* in the Pleistocene of Europe. — *Frontiers in Ecol*ogy and Evolution 9, 622412, https://doi.org/10.3389/ fevo.2021.622412.
- Saarinen, J., Eronen, J. T., Fortelius, M., Seppä, H. & Lister, A. M. 2016: Patterns of diet and body mass of large ungulates from the Pleistocene of western Europe, and their relation to vegetation. — *Palaeontologia Elec-*

tronica 19.3.32A: 1–58, https://palaeo-electronica.org/ content/pdfs/443.pdf.

- Saarinen, J., Boyer, A. G., Brown, J. H., Costa, D. B., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., Okie, J. G., Sibly, R. M., Stephens, P. R., Theodor, J., Uhen, M. D. & Smith, F. A. 2014: Patterns of body size evolution in Cenozoic land mammals: intrinsic biological processes and extrinsic forcing. — *Proceedings* of the Royal Society B 281, 20132049, http://dx.doi. org/10.1098/rspb.2013.2049.
- Saarinen J., Karme, A., Cerling, T., Uno, K., Säilä, L., Kasiki, L., Ngene, S., Obari, T., Manthi, F. K., Mbua, E. & Fortelius, M. 2015: A new tooth wear-based dietary analysis method for Proboscidea (Mammalia). — Journal of Vertebrate Paleontology 35, e918546, https://doi. org/10.1080/02724634.2014.918546.
- Saarinen, J., Oksanen, O., Žliobaitė, I., Fortelius, M., DeMiguel, D., Azanza, B., Bocherens, H., Luzón, C., Solano-García, J., Yravedra, J., Courtenay, L. A., Blain, H.-A., Sánchez-Bandera, C., Serrano-Ramos, A., Rodriguez-Alba, J. J., Viranta, S., Barsky, D., Tallavaara, M., Oms, O., Agustí, J., Ochando, J., Carrion, J. S. & Jiménez-Arenas, J. M. 2021a: Pliocene to Middle Pleistocene climate history in the Guadix-Baza Basin, and the environmental conditions of early *Homo* dispersal in Europe. — *Quaternary Science Reviews* 268, 107132, https://doi.org/10.1016/j.quascirev.2021.107132.
- Schlosser, M. 1903: Die fossilen Säugetiere Chinas nebst einer Odontographie der recenten Antilopen. — Abhandlungen der Bayerischen Akademie der Wissenschaften II 22: 1–22.
- Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F. & Walker, A. 2005: Dental microwear texture analysis shows within-species diet variability in fossil hominins. — *Nature* 436: 693–695.
- Skogland, T. 1983: The effects of density dependent resource limitation on size of wild reindeer. — Oecologia 60: 156–168.
- Simpson, G. G. 1944: Tempo and mode in evolution. Columbia University Press, New York.
- Simpson, G. G. 1951: Horses: The story of the horse family in the modern world and through sixty million years of history. — Oxford University Press, Oxford.
- Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., McCain, C., Okie, J. K., Saarinen, J., Sibly, R. M., Stephens, P. R., Theodor, J. & Uhen, M. D. 2010: The evolution of maximum body size of terrestrial mammals. — *Science* 330: 1216–1219.
- Sokolowski, K. G., Godding, B. F., Du, A. & Faith, J. T. 2023: Do grazers equal grasslands? Strengthening paleoenvironmental inferences through analysis of present-day African mammals. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 629, 111786, https://doi. org/10.1016/j.palaeo.2023.111786.
- Solounias, N. & Dawson-Saunders, B. 1988: Dietary adaptations and paleoecology of the Late Miocene ruminants from Pikermi and Samos in Greece. — Palaeogeogra-

phy, Palaeoclimatology, Palaeoecology 65: 149–172, https://doi.org/10.1016/0031-0182(88)90021-1.

- Solounias, N., Rivals, F. & Semprebon, G. M. 2010: Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (Late Miocene of Greece). — *Paleobiology* 36: 113–136.
- Solounias, N., Plavcan, J. M., Quade, J. & Witmer, L. 1999: The paleoecology of the Pikermian biome and the savanna myth. — In: Agusti, J., Rook, L. & Andrews, P. (eds.), *Hominoid evolution and climatic change in Europe*, vol. 1: *The evolution of Neogene terrestrial ecosystems in Europe*: 436–453. Cambridge University Press, Cambridge.
- Solounias, N., Tariq, M., Hou, S. K., Danowitz, M. & Harrison, M. 2014: A new method of tooth mesowear and a test of it on domestic goats. — *Annales Zoologici Fennici* 51: 111–118.
- Strani, F., DeMiguel, D., Bellucci, L. & Sardella, R. 2018: Dietary response of Early Pleistocene ungulate communities to the climate oscillations of the Gelasian/ Calabrian transition in central Italy. — Palaeogeography, Palaeoclimatology, Palaeoecology 499: 102–111, https://doi.org/10.1016/j.palaeo.2018.03.021.
- Strömberg, C. A. E. 2003: The origin and spread of grass-dominated ecosystems during the Tertiary of North America and how it relates to the evolution of hypsodonty in equids. — Ph.D. thesis, University of California, Berkeley.
- Strömberg, C. A. E. 2006: The evolution of hypsodonty in equids: testing a hypothesis of adaptation. — *Paleobiology* 32: 236–258, https://doi.org/10.1666/0094-8373(20 06)32[236:EOHIET]2.0.CO;2.
- Strömberg, C. A. E., Werdelin, L., Friis, E. M. & Saraç, G. 2007: The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 250: 18–49, https://doi.org/10.1016/j. palaeo. 2007.02.012.
- Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J. & Carlini, A. A. 2013: Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. — *Nature Communications* 4, 1478, https://doi.org/10.1038/ncomms2508.
- Stuart, A. J. 2014: Late Quaternary megafaunal extinctions on the continents: a short review. — *Geological Journal* 50: 338–363, https://doi.org/10.1002/gj.2633.
- Töigo, C., Gaillard, J.-M., van Laere, G., Hewison, M. & Morellet, N. 2006. How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. — *Ecography* 29: 301–308.
- Ulbricht, A., Maul, L. C. & Schulz, E. 2015: Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. — *Mammalian Biology* 80: 14–20.
- Ungar, P., Brown, C., Bergstrom, T. & Walker, A. 2003: Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. — *Scanning* 25: 185–193, https://doi.org/10.1002/ sca.4950250405.
- Uno, K., Cerling, T., Harris, J., Kunimatsu, Y., Leakeye, M.,

Nakatsukasad, M. & Nakaya, H. 2011: Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. — *Proceedings of the National Academy of Sciences of the United States of America* 108: 6509–6514, https://doi.org/10.1073/pnas.1018435108.

- Uzunidis, A. 2021: Middle Pleistocene variations in the diet of *Equus* in the south of France and its morphometric adaptations to local environments. — *Quaternary* 4(3), 23, https://doi.org/10.3390/quat4030023.
- van der Kaars, S., Miller, G. H., Turney, C. S. M., Cook, E. J., Nürnberg, D., Schönfeld, J., Kershaw, A. P. & Lehman, S. J. 2017: Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. — *Nature Communications* 8, 14142, https:// doi.org/10.1038/ncomms14142.
- van der Merwe, N. J. & Medina, E. 1991: The canopy effect, carbon isotope ratios and foodwebs in Amazonia. — *Journal of Archaeological Science* 18: 249259, https:// doi.org/10.1016/0305-4403(91)90064-V.
- Vermillion, W. A., Polly, P. D., Head, J. J., Eronen, J. T. & Lawing, A. M. 2018: Ecometrics: A traitbased approach to paleoclimate and paleoenvironmental reconstruction. — In: Croft, D. A., Su, D. F. & Simpson, S. W. (eds.), *Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities*. 373–394. Vertebrate Paleobiology and Paleoanthropology, Springer, Cham, https://doi.org/10.1007/978-3-319-94265-0 17.
- Walker, A., Hoeck, H. N. & Perez, L. 1978: Microwear of mammalian teeth as an indicator of diet. — *Science* 201: 908–910, https://doi.org/10.1126/science.684415.
- West, G. B., Brown, J. H. & Enquist, B. J. 1997: A general model for the origin of allometric scaling laws in biology. — *Science* 276: 122–126, https://doi.org/10.1126/ science.276.5309.12.
- West, G. B., Woodruff, W. H. & Brown, J. H. 2002: Allometric scaling of metabolic rates from molecules and mitocondia to cells and mammals. — *Proceedings of the National Academy of Sciences of the United States of America* 99: 2473–2478, https://doi.org/10.1073/ pnas.012579799.
- Wilson, O. E. & Parker, A. K. 2023: Low predator competition indicates occupation of macro-predatory niches by giant Miocene reptiles at La Venta, Colombia. — *Palaeogeography, Palaeoclimatology, Palaeoecology* 632, 111843, https://doi.org/10.1016/j. palaeo.2023.111843.
- Wilson, O. E. & Saarinen, J. 2024: Application of Kurténian theories to non-analogue communities: dental traits in South America. — *Annales Zoologici Fennici* 61: 433–454.
- Wolverton, S., Huston, M. A., Kennedy, J. H., Cagle, K. & Cornelius, J. D. 2009. Conformation to Bergmann's Rule in white-tailed deer can be explained by food availability. — *The American Midland Naturalist* 162: 403–417.
- Xafis, A., Saarinen J., Nagel, D. & Grimsson, F. 2020: Palaeodietary traits of large mammals from the Middle Miocene of Gračanica (Bugojno Basin, Bosnia-Herzegovina). — *Palaeobiodiversity and Palaeoenvironments* 100: 457– 477, https://doi.org/10.1007/s12549-020-00435-2.

- Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001: Trends, rhythms and aberrations in global climate 65 Ma to present. — *Science* 292: 686–693, https://doi. org/10.1126/science.1059412.
- Žliobaitė, I., Rinne, J., Tóth, A. B., Mechenich, M., Liu, L., Behrensmeyer, A. K. & Fortelius, M. 2016: Herbivore teeth predict climatic limits in Kenyan ecosystems. — *Proceedings of the National Academy of Sciences of the United States of America* 45: 12751–12756, https://doi. org/10.1073/pnas.1609409113.
- Žliobaitė, I., Tang, H., Saarinen, J., Fortelius, M., Rinne, J. & Rannikko J. 2018: Dental ecometrics of tropical Africa: linking vegetation types and communities of large plant-eating mammals. — *Evolutionary Ecology Research* 19: 127–147.
- Žliobaite, I., Fortelius, M., Bernor, R. L., van den Hoek Ostende, L., Janis, C. M., Lintulaakso, K., Säilä, L.

K., Werdelin, L., Casanovas-Vilar, I., Croft, D., Flynn, L., Hopkins, S. S. B., Kaakinen, A., Kordos, L., Kostopoulos, D. S., Pandolfi, L., Rowan, J., Tesakov, A., Vislobokova, I., Zhang, Z., Aiglstorfer, M., Alba, D. M., Arnal, M, Antoine, P. O., Belmaker, M., Bilgin, M., Boisserie, J.-R., Borths, M., Cooke, S. B., Dam, J. van, Delson, E., Eronen, J. T., Fox, D., Furió, A. F. M., Giaourtsakis, I. X., Holbrook, L., Hunter, J., López-Torres, S., Ludtke, J., Minwer-Barakat, R., van der Made, J., Mennecart, B., Pushkina, D., Rook, L., Saarinen, J., Samuels, J. X., Sanders, W., Silcox, M. & Vepsäläinen, J. 2023: The NOW Database of fossil mammals. - In: Casanovas-Vilar, I., van den Hoek Ostende, L. W., Janis, C. M. & Saarinen, J. (eds.), Evolution of Cenozoic land mammal faunas and ecosystems: 33-42. Vertebrate Paleobiology and Paleoanthropology, Springer, Cham, https://doi.org/10.1007/978-3-031-17491-9 3.

Appendix 1. Species-level dental ecometric data. HYP = hypsodonty, LOP = longitudinal loph count, AL = acute loph, OL = obtuse loph, SF = structural fortification, OT = occlusal topography, BUN = bunodonty, HOD = horizo-donty.

Locality/species	HYP	LOP	AL	OL	SF	BUN	OT	00	HOD
Pikermi									
Gazella capricornis	2	2	1	0	0	0	0	0	1
Miotragocerus valenciennesi	1	2	1	1	0	0	0	0	1
Oioceros rothi	2	2	0	1	0	0	0	1	1
Paleoreas lindermayeri	2	2	1	1	0	0	0	0	1
Palaeoryx pallasi	2	2	0	1	0	0	0	1	1
Prostrepsiceros rotundicornis	2	2	0	1	0	0	0	0	1
Protoryx carolinae	1	2	1	1	0	0	0	0	1
Protragelaphus skouzesi	2	2	1	0	0	0	0	0	1
Sporadotragus parvidens	2	2	0	1	0	0	0	1	1
Tragoportax amalthea	2	2	1	1	0	0	0	0	1
Lucentia indet.	1	2	1	0	0	0	0	0	1
Pliocervus pentelici	1	2	1	0	0	0	0	0	1
Bohlinia attica	1	2	1	0	0	0	0	0	1
Helladotherium duvernoyi	2	2	1	0	0	0	0	0	1
Palaeotragus roueni	1	2	1	0	0	0	0	0	1
Hippopotamodon major	1	0	0	0	0	1	0	0	2
Dorcatherium indet.	1	2	1	0	0	0	0	0	1
Ancylotherium pentelicum	1	1	1	0	0	0	0	0	1
Cremohipparion mediterraneum	3	2	0	1	0	0	1	0	1
Hippotherium brachypus	3	2	0	1	0	0	1	0	1
Acerorhinus neleus	1	1	1	1	0	0	0	0	1
Dihoplus pikermiensis	2	1	1	1	0	0	0	0	1
Miodiceros neumayri	2	1	1	1	0	0	0	0	1
Mesopithecus pentelicus	1	0	0	0	0	1	0	0	1
Deinotherium proavum	1	0	1	0	0	0	0	0	1
Konobelodon atticus	1	0	0	1	0	0	0	0	3
Choerolophodon pentelici	2	0	0	1	0	0	1	0	3
Mammut indet.	1	0	1	0	0	0	0	0	3
Maragheh									
Ancylotherium pentelici	1	1	1	0	0	0	0	0	1
Iranotherium morgani	3	1	0	1	0	0	1	0	1
Miodiceros neumayri	2	1	1	1	0	0	0	0	1
Chilotherium persiae	2	1	1	1	0	0	0	0	1
,								co	ntinued

Locality/species	HYP	LOP	AL	OL	SF	BUN	ОТ	00	HOD
Maragheh									
Cremohipparion matthewi	3	2	0	1	0	0	1	0	1
Cremohipparion moldavicum	3	2	0	1	0	0	1	0	1
Cremohipparion aff. moldavicum	3	2	0	1	0	0	1	0	1
Hipparion campbelli	3	2	0	1	0	0	1	0	1
Hippotherium brachypus	3	2	0	1	0	0	1	0	1
Bohlinia attica	1	2	1	0	0	0	0	0	1
Honanotherium bernori	1	2	1	0	0	0	0	0	1
Helladotherium duvernoyi	2	2	1	0	0	0	0	0	1
Palaeotragus coelophryes	1	2	1	0	0	0	0	0	1
Samotherium neumayri	2	2	1	1	0	0	0	0	1
Tragoportax amalthea	2	2	1	1	0	0	0	0	1
Urmiatherium polaki	3	2	0	1	0	0	0	1	1
<i>Gazella</i> sp.	2	2	1	0	0	0	0	0	1
Criotherium argaloides	3	2	0	1	0	0	0	1	1
Miotragocerus indet.	1	2	1	1	0	0	0	0	1
Oioceros atropatenes	2	2	0	1	0	0	0	1	1
<i>Palaeoreas</i> sp.	2	2	1	1	0	0	0	0	1
Protoryx carolinae	1	2	1	1	0	0	0	0	1
Protragelaphus skouzesi	2	2	1	0	0	0	0	0	1
Hippopotamodon major	1	0	0	0	0	1	0	0	2
Deinotherium proavum	1	0	1	0	0	0	0	0	1
Konobelodon atticus	1	0	0	1	0	0	0	0	3
Choerolophodon pentelici	2	0	0	1	0	0	1	0	3
Skoufotragus laticeps	2	2	1	1	0	0	0	0	1
Prostrepsiceros rotundicornis	2	2	0	1	0	0	0	0	1
Prostrepsiceros vinyaki	3	2	0	1	0	0	0	0	1
Mesopithecus pentelicus	1	0	0	0	0	1	0	0	1
Samoceros minotaurus	2	2	1	1	0	0	0	0	1
Oioceros rothii	2	2	0	1	0	0	0	1	1
Mt. Luberon									
Hipparion prostylum	3	2	0	1	0	0	1	0	1
Pliocervus matheronis	1	2	1	0	0	0	0	0	1
Tragoportax amalthea	2	2	1	1	0	0	0	0	1
Gazella deperdita	1	2	1	0	0	0	0	0	1
Dihoplus schleiermacheri	1	1	1	1	0	0	0	0	1
Microstonyx erymanthius	1	0	0	0	0	1	0	0	2
Dorn-Dürkheim 1									
Anisodon indet.	1	1	1	0	0	0	0	0	1
Hippotherium primigenium	3	2	0	1	0	0	1	0	1
Hippotherium kammerschmittae	3	2	0	1	0	0	1	0	1
Cervidae, large									
(cf. Procapreolus/Muntiacinae)	1	2	1	0	0	0	0	0	1
Cervidae, small									
(cf. Cervavitulus minimus)	1	2	1	0	0	0	0	0	1
Micromeryx indet.	1	2	1	0	0	0	0	0	1
Miotragocerus indet.	1	2	1	1	0	0	0	0	1
Dorcatherium naui	1	2	1	0	0	0	0	0	1
Hippopotamodon major	1	0	0	0	0	1	0	0	2
Aceratherium incisivum	1	1	1	1	0	0	0	0	1
Alicornops alfambrensis	2	1	1	1	0	0	0	0	1
Dihoplus schleiermacheri	1	1	1	1	0	0	0	0	1
Tapiriscus pannonicus	1	0	1	0	0	0	0	0	1
Tapirus priscus	1	0	1	0	0	0	0	0	1
Deinotherium proavum	1	0	1	0	0	0	0	0	1
								CC	ntinued

Locality/species	HYP	LOP	AL	OL	SF	BUN	ОТ	00	HOD
Dorn-Dürkheim 1									
Anancus lehmanni	1	0	0	1	0	0	0	0	3
Tetralophodon longirostris	1	0	0	1	0	0	0	0	3
Stegolophodon caementifer	1	0	0	1	0	0	0	0	3
Kohfidisch									
Aceratherium? indet.	1	1	1	1	0	0	0	0	1
Hippotherium indet.	3	2	0	1	0	0	1	0	1
Cervavitus indet.	1	2	1	0	0	0	0	0	1
Euprox indet.	1	2	1	0	0	0	0	0	1
Procapreolus aff. lockzyi	1	2	1	0	0	0	0	0	1
Micromeryx sp.	1	2	1	0	0	0	0	0	1
Caprinae indet indet.	2	2	0	1	0	0	0	0	1
Gazella aff. pilgrimi	2	2	1	1	0	0	0	0	1
Miotragocerus indet.	1	2	1	0	0	0	0	0	1
Orygotherium heinzi	1	2	1	0	0	0	0	0	1
Palaeoryx indet.	2	2	0	1	0	0	0	0	1
Protoryx indet.	2	2	1	1	0	0	0	0	1
Tragoportax gaudryi	2	2	1	0	0	0	0	0	1
Deinotherium indet.	1	0	1	0	0	0	0	0	1
Lothagam (Lower Nawata)									
Aepyceros praemelampus	3	2	0	1	0	0	0	1	1
Damaliscus sp.	3	2	0	1	0	0	1	1	1
Bovini indet. (cf. Simatherium) indet.	3	2	0	1	1	0	0	0	1
Hippotragus Indet.	3	2	0	1	1	0	1	1	1
Kobus laticornis	3	2	0	1	1	0	0	0	1
Kobus praesigmoidalis Menelikie leekevi	3	2	0	1	1	0	0	0	1
	3	2	1	1	0	0	1	1	1
Tragelaphus kyaloae?	2	2	1	1	0	0	0	0	1
Prostrepsiceros indet.	2.5	2	1	1	0	0	0	0	1
Tragoportav indet	3	2	1	1	0	0	0	0	1
Palaootrague gormaini	2 1	2	1	0	0	0	0	0	1
Falaeoliagus germann Sivatharium indat	2	2	0	1	0	0	0	1	1
Archaopatamus harvardi	ے ۱	2	0	0	0	1	0	0	1
Archaeopotamus Intratur	1	0	0	0	0	1	0	0	1
Conobyus aiganteus	1	0	0	0	0	1	0	0	2
Kubanochoerus indet	1	0	0	0	0	1	0	0	2
Nvanzachoerus jaegeri/euilus	1	0	0	0	0	1	0	0	2
Potamochoerus indet	1	0	Ő	0	0	1	0	0	2
Sivachoerus syrticus	1	Õ	õ	Õ	Õ	1	Õ	Õ	2
Eurvanathohinnus feibeli	3	2	õ	1	Õ	0	1	Õ	1
Sivalhippus turkanense	3	2	õ	1	Õ	0	1	Õ	1
Brachypotherium lewisi	2	1	1	1	õ	0	0	Õ	1
Ceratotherium praecox	2	1	1	1	0	0	Ő	0	1
Deinotherium bozasi	1	0	1	0	0	0	Ő	0	1
Stegotetrabelodon orbus	1	0	0	1	0	0	Ő	0	3
Primelephas korotorensis	1	0	0	1	0	0	0	0	3
Anancus kenvensis	2	0	0	1	0	0	0	0	3
Parapapio lothagamensis	1	0	0	0	0	1	0	0	1
Lukeino									
Aepyceros indet.	3	2	0	1	0	0	0	1	1
Cephalophus indet.	1	2	0	1	1	0	0	0	1
Gazella indet.	3	2	1	1	0	0	0	0	1
Tragelaphus spekei	1	2	1	1	0	0	0	0	1
Ugandax gautieri	2	2	0	1	1	0	0	0	1

Locality/species	HYP	LOP	AL	OL	SF	BUN	ОТ	00	HOD
Lukeino									
Giraffa jumae	1	2	1	0	0	0	0	0	1
Hippopotamus indet.	1	0	0	1	0	0	0	0	1
Cainochoerus africanus	1	0	0	0	0	1	0	0	1
Sivachoerus syrticus	1	0	0	0	0	1	0	0	2
Ancylotherium ceboitense	1	1	1	0	0	0	0	0	1
Chemositia indet.	1	1	1	0	0	0	0	0	1
Sivalhippus turkanense	3	2	0	1	0	0	1	0	1
"Hipparion" sitifense	3	2	0	1	0	0	1	0	1
Brachypotherium lewisi	2	1	1	1	0	0	0	0	1
Ceratotherium praecox	2	1	1	1	0	0	0	0	1
Diceros bicornis	2	1	1	1	0	0	0	0	1
Colobus indet.	1	0	0	0	0	1	0	0	1
Orrorin tugenensis	1	0	0	0	0	1	0	0	1
Deinotherium bozasi	1	0	1	0	0	0	0	0	1
Stegotetrabelodon orbus	1	0	0	1	0	0	0	0	3
Primelephas korororensis	1	0	0	1	0	0	0	0	3
Anancus kenyensis	2	0	0	1	0	0	0	0	3
Loxodonta cookei	1	0	0	1	0	0	0	0	3
Tropical rainforest,									
Bukit Barisan Selatan NP	0	0	•		0	0		0	0
Elephas maximus	3	0	0	1	0	0	1	0	3
Macaca tascicularis	1	0	0	0	0	1	0	0	1
Presbytis cristata	1	0	0	0	0	1	0	0	1
Presbytis melalophus		0	0	0	0	1	0	0	1
Hylobates agilis		0	0	0	0	1	0	0	1
Symphalangus syndactylus Tapiruo indiouo	1	0	1	0	0	1	0	0	1
Discretinus aumetroneia	1	1	1	1	0	0	0	0	1
Sue serefe	1	0	0	0	1	1	0	0	1
Sus sciola	1	0	1	0	0	0	0	0	1
Munticous muntiak	1	2	1	0	0	0	0	0	1
Russ unicolor	1 0	2	1	1	0	0	0	0	- 1
Rubalus hubalis	2	2	0	- 1	1	0	0	0	- 1
Kaziranga National Park	5	2	0	I	1	0	0	0	1
Flenhas maximus	З	0	0	1	0	0	1	0	З
Bhinoceros unicornis	2	1	1	1	0	0	0	0	1
Bubalus arnee	3	2	0	1	1	0	0	0	1
Bos gaurus	3	2	0	1	1	0	0	0	1
Rusa unicolor	2	2	1	1	0	0	Ő	0	1
Rucervus duvaucelii	2	2	1	1	0	0	0	0	1
Axis porcinus	2	2	0	1	1	0	0	0	1
Muntiacus muntiak	1	2	1	0	0	0	0	0	1
Sus scrofa	1	0	0	0	1	1	0	0	1
Macaca mulatta	1	0	0	0	0	1	0	0	1
Macaca assamensis	1	0	0	0	0	1	0	0	1
Trachypithecus pileatus	1	0	0	0	0	1	0	0	1
Hoolock hoolock	1	0	0	0	0	1	0	0	1
Ranthambore National Park									
Elephas maximus	3	0	0	1	0	0	1	0	3
Bos gaurus	3	2	0	1	1	0	0	0	1
Bubalus arnee	3	2	0	1	1	0	0	0	1
Boselaphus tragocamelus	3	2	0	1	1	0	0	0	1
Antilope cervicapra	2	2	0	1	0	0	0	1	1
Gazella bennettii	3	2	0	1	0	0	0	1	1

Locality/species	HYP	LOP	AL	OL	SF	BUN	OT	00	HOD
Tetraceros quadricornis	3	2	0	1	1	0	0	0	1
Rusa unicolor	2	2	1	1	0	0	0	0	1
Rucervus duvaucelii	2	2	1	1	0	0	0	0	1
Axis porcinus	2	2	0	1	1	0	0	0	1
Axis axis	2	2	0	1	1	0	0	0	1
Muntiacus muntjak	1	2	1	0	0	0	0	0	1
Semnopithecus dussumieri	1	0	0	0	0	1	0	0	1
Macaca mulatta	1	0	0	0	0	1	0	0	1
Aberdare National Park									
Loxodonta africana	3	0	0	1	0	0	1	0	3
Aepyceros melampus	3	2	0	1	0	0	0	1	1
Cephalophus harveyi	2	2	0	1	1	0	0	0	1
Cephalophus nigrifrons	2	2	0	1	1	0	0	0	1
Kobus ellipsiprymnus	3	2	0	1	1	0	0	0	1
Nanger granti	3	2	0	1	0	0	0	1	1
Neotragus moschatus	2	2	0	1	0	0	0	1	1
Oreotragus oreotragus	3	2	0	1	0	0	0	1	1
Philantomba monticola	1	0	0	1	0	0	0	0	1
Sylvicapra grimmia	2	2	0	1	0	0	0	1	1
Syncerus caffer	3	2	0	1	1	0	0	0	1
Taurotragus oryx	3	2	0	1	0	0	0	1	1
Tragelaphus eurycerus	2	2	0	1	0	0	0	1	1
Tragelaphus scriptus	2	2	0	1	0	0	0	1	1
Hippopotamus amphibius	2	0	0	1	1	0	0	0	1
Hylochoerus meinertzhageni	2	0	0	1	1	0	0	0	2
Phacochoerus africanus	3	0	0	0	0	1	1	0	3
Equus quagga	3	2	0	1	0	0	1	0	1
Diceros bicornis	2	1	1	1	0	0	0	0	1
Cercopithecus mitis	1	0	0	0	0	1	0	0	1
Chlorocebus pygerythrus	1	0	1	0	0	0	0	0	1
Colobus guereza	1	0	1	0	0	0	0	0	1
Papio anubis	1	0	0	0	0	1	0	0	1
Kakamega Forest									
Cephalophus silvicultor	2	2	0	1	1	0	0	0	1
Cephalophus harveyi	2	2	0	1	1	0	0	0	1
Cephalophus weynsi	2	2	0	1	1	0	0	0	1
Neotragus moschatus	2	2	0	1	0	0	0	1	1
Philantomba monticola	1	0	0	1	0	0	0	0	1
Sylvicapra grimmia	2	2	0	1	0	0	0	1	1
Tragelaphus scriptus	2	2	0	1	0	0	0	1	1
Tragelaphus spekii	2	2	0	1	0	0	0	1	1
Hylochoerus meinertzhageni	2	0	0	1	1	0	0	0	2
Phacochoerus africanus	3	0	0	0	0	1	1	0	3
Potamochoerus larvatus	1	0	0	0	1	1	0	0	1
Cercopithecus ascanius	1	0	0	0	0	1	0	0	1
Cercopithecus mitis	1	0	0	0	0	1	0	0	1
Cercopithecus neglectus	1	0	0	0	0	1	0	0	1
Chlorocebus pygerythrus	1	0	1	0	0	0	0	0	1
Colobus guereza	1	0	1	0	0	0	0	0	1
Papio anubis	1	0	0	0	0	1	0	0	1
Meru National Park	-	<i>c</i>	~		-	-		-	_
Loxodonta atricana	3	0	0	1	0	0	1	0	3
Aepyceros melampus	3	2	0	1	0	0	0	1	1
Alcelaphus buselaphus	3	2	0	1	0	0	1	0	1
Kobus ellipsiprymnus	3	2	0	1	1	0	0	0	1

Locality/species	HYP	LOP	AL	OL	SF	BUN	ОТ	00	HOD
Meru National Park									
Litocranius walleri	2	2	0	1	0	0	0	1	1
Madoqua guentheri	2	2	0	1	0	0	0	1	1
Madoqua kirkii	2	2	0	1	0	0	0	1	1
Nanger granti	3	2	0	1	0	0	0	1	1
Oryx beisa	3	2	0	1	1	0	1	0	1
Ourebia ourebi	3	2	0	1	0	0	0	1	1
Philantomba monticola	1	0	0	1	0	0	0	0	1
Raphicerus campestris	3	2	0	1	0	0	0	1	1
Redunca redunca	3	2	0	1	1	0	0	0	1
Sylvicapra grimmia	2	2	0	1	0	0	0	1	1
Syncerus caffer	3	2	0	1	1	0	0	0	1
Taurotragus oryx	3	2	0	1	0	0	0	1	1
Tragelaphus imberbis	2	2	0	1	0	0	0	1	1
Tragelaphus scriptus	2	2	0	1	0	0	0	1	1
Tragelaphus strepsiceros	2	2	0	1	0	0	0	1	1
	1	2	1	1	0	0	0	0	1
Hippopotamus ampnibius	2	0	0	1	1	0	0	0	2
Hylochoerus meinertznageni	2	0	0	1	1	0	0	0	2
Phacochoerus aetniopicus	3	0	0	0	0	1	1	0	3
Priacocrioerus airicanus	3	0	0	0	1	1	0	0	3
	۱ د	0	0	1	1	1	1	0	1
Equus quagga	3	2	0	1	0	0	1	0	1
Diseres bisernis	2	- 1	1	1	0	0	0	0	1
Coratethorium simum	2	1 2	0	1	0	0	1	0	1
Cereonitheous mitic	1	2	0	0	0	1	0	0	1
Chlorocebus pygerythrus	1	0	1	0	0	0	0	0	1
Colobus quereza	1	0	1	0	0	0	0	0	1
Enuthrocebus patas	1	0	0	0	0	1	0	0	1
Panio anubis	1	0	0	0	0	1	0	0	1
Samburu Hills	1	0	0	0	0	'	0	0	
l oxodonta africana	3	0	0	1	0	0	1	0	3
Aenvceros melampus	3	2	0	1	0	0	0	1	1
Fudorcas thomsonii	3	2	0	1	0	0	Õ	1	1
Kobus ellipsiprvmnus	3	2	0	1	1	0	Õ	0	1
Litocranius walleri	2	2	0	1	0	0	0	1	1
Madoqua quentheri	2	2	0	1	0	0	0	1	1
Madogua kirkii	2	2	0	1	0	0	0	1	1
Nanger granti	3	2	0	1	0	0	0	1	1
Oreotragus oreotragus	3	2	0	1	0	0	0	1	1
Oryx beisa	3	2	0	1	1	0	1	0	1
Sylvicapra grimmia	2	2	0	1	0	0	0	1	1
Syncerus caffer	3	2	0	1	1	0	0	0	1
Taurotragus oryx	3	2	0	1	0	0	0	1	1
Tragelaphus imberbis	2	2	0	1	0	0	0	1	1
Tragelaphus scriptus	2	2	0	1	0	0	0	1	1
Tragelaphus strepsiceros	2	2	0	1	0	0	0	1	1
Giraffa camelopardalis	1	2	1	1	0	0	0	0	1
Hippopotamus amphibius	2	0	0	1	1	0	0	0	2
Phacochoerus africanus	3	0	0	0	0	1	1	0	3
Equus quagga	3	2	0	1	0	0	1	0	1
Equus grevyi	3	2	0	1	0	0	1	0	1
Diceros bicornis	2	1	1	1	0	0	0	0	1
Cercopithecus mitis	1	0	0	0	0	1	0	0	1

Locality/species	HYP	LOP	AL	OL	SF	BUN	ОТ	00	HOD
Samburu Hills									
Chlorocebus pygerythrus	1	0	1	0	0	0	0	0	1
Erythrocebus patas	1	0	0	0	0	1	0	0	1
Papio anubis	1	0	0	0	0	1	0	0	1
Tropical rainforest,									
Nouabale-Ndoki NP									
Arctocebus aureus	1	0	0	0	0	1	0	0	1
Cephalophus callipygus	2	2	0	1	1	0	0	0	1
Cephalophus dorsalis	2	2	0	1	1	0	0	0	1
Cephalophus leucogaster	2	2	0	1	1	0	0	0	1
Cephalophus nigrifrons	2	2	0	1	1	0	0	0	1
Cephalophus ogilbyi	2	2	0	1	1	0	0	0	1
Cepnalophus silvicultor	2	2	0	1	1	0	0	0	1
Cercocebus agilis	1	0	0	0	0	1	0	0	1
Cercopithecus cephus	1	0	0	0	0	1	0	0	1
Cercopithecus neglectus	1	0	0	0	0	1	0	0	1
	1	0	0	0	0	1	0	0	1
Cercopitnecus pogonias	1	0	0	0	0	1	0	0	1
Colobus guereza	1	0	1	0	0	0	0	0	1
Colobus satanas	1	0	1	0	0	0	0	0	1
	1	0	0	0	0		0	0	1
Gorilla gorilla	1	0	0	0	0	1	0	0	1
Hyaemoschus aquaticus	1	2	1	1	0	1	0	0	1
Lopnocebus albigena	1	0	1	0	0	1	0	0	1
Loxodonia cyciolis	3	0	0	1	0	1	1	0	3
	1	0	1	0	0	1	0	0	1
Mophinecus ogouensis	1	0	0	1	0	0	0	1	1
Reoliagus balesi	2	2	0	0	0	1	0	0	1
Paradiatious patto	1	0	0	0	0	- 1	0	0	1
Perodicticus polito	1	0	0	1	0	0	0	0	1
Potamochoerus porcus	1	0	0	0	1	1	0	0	1
Syncerus caffer nanus	3	2	0	1	1	0	0	0	1
Tradelanhus snekei	2	2	0	1	0	0	0	1	1
Serengeti (INCN site 98913)	2	2	0	1	0	0	0	1	1
Aenvoeros melamous	З	2	0	1	0	0	0	1	1
Alcelanhus huselanhus	3	2	0	1	0	Ő	1	0	1
Chlorocebus pygerythrus	1	0	0	0	0	1	0	0	1
Colobus quereza	1	0	1	0	0	0	0	0	1
Connochaetes taurinus	3	2	0	1	0	õ	1	Õ	1
Damaliscus lunatus	3	2	0	1	0	0	1	0	1
Diceros bicornis	2	1	1	1	0	õ	0	Õ	1
Fauus auagaa	3	2	0	1	0	õ	1	õ	1
Eudorcas thomsonii	3	2	0	1	0	0	0	1	1
Giraffa camelopardalis	1	2	1	1	0	0	Ő	0	1
Hippotragus equinus	3	2	0	1	1	Ő	0	0	1
Kobus ellipsiprvmnus	3	2	0	1	1	0	0	0	1
Loxodonta africana	3	0	0	1	0	0	1	0	3
Madoqua kirkii	2	2	0	1	0	0	0	1	1
Nanger granti	3	2	0	1	0	0	0	1	1
Oreotragus oreotragus	3	2	0	1	0	0	0	1	1
Otolemur crassicaudatus	1	0	0	0	0	1	0	0	1
Ourebia ourebi	3	2	0	1	0	0	0	1	1
Papio anubis	1	0	0	0	0	1	0	0	1
Papio cynocephalus	1	0	0	0	0	1	0	0	1
								СС	ontinued

Locality/species	HYP	LOP	AL	OL	SF	BUN	ОТ	00	HOD
Serengeti (INCN site 98913)									
Phacochoerus africanus	3	0	0	0	0	1	1	0	3
Potamochoerus larvatus	1	0	0	0	1	1	0	0	1
Raphicerus campestris	3	2	0	1	0	0	0	1	1
Redunca fulvorufula	3	2	0	1	1	0	0	0	1
Redunca redunca	3	2	0	1	1	0	0	0	1
Sylvicapra grimmia	2	2	0	1	0	0	0	1	1
Syncerus caffer	3	2	0	1	1	0	0	0	1
Tragelaphus scriptus	2	2	0	1	0	0	0	1	1
Białowieża Forest (IUCN site 13410)									
Alces alces	1	2	1	1	0	0	0	0	1
Bison bonasus	3	2	0	1	1	0	0	0	1
Capreolus capreolus	1	2	1	1	0	0	0	0	1
Cervus elaphus	2	2	1	1	0	0	0	0	1
Dama dama	1	2	1	1	Õ	0	Õ	Ő	1
Sus scrofa	1	0	0	0	1	1	õ	Õ	1
Boreal forest British Columbia		Ũ	Ũ	0			Ũ	Ũ	•
(IUCN site 126218)									
Alces americanus	1	2	1	1	0	0	0	0	1
Cervus canadensis	2	2	1	1	Õ	0	Õ	Õ	1
Odocoileus hemionus	1	2	1	1	Õ	0	Õ	Ő	1
Odocoileus virginianus	1	2	1	1	õ	Õ	õ	Õ	1
Oreamnos americanus	3	2	0	1	õ	Õ	õ	1	1
Ovis canadensis	3	2	0	1	0	0	0	1	1
Ariinshan National Nature Reserve	0	2	Ū		Ū	0	0		
Bos mutus	3	2	0	1	1	0	0	0	1
Camelus bactrianus	3	2	Õ	1	0	0	0	1	1
Cervus elanhus varkandensis	2	2	1	1	0	0	0	0	1
Eaus kiana	3	2	0	1	Õ	0	1	0	1
Ovis ammon	3	2	0	1	0	0	0	1	1
Pantholons hoadsoni	3	2	0	1	0	0	0	1	1
Procenze nicticaudata	3	2	0	1	0	0	0	1	1
Przowalskium albirostris	2	2	1	1	0	0	0	0	1
Przewaiskium abirosuns	2	2	1	1	0	0	0	0	1
Convue elaphus kansuonsis	0	0	-1	1	0	0	0	0	- 1
	2	2	0	1	0	0	1	0	- 1
Equus hemionus	3	2	0	1	0	0	1	0	- 1
Equus kiang	3	2	0	1	0	0	- 1	0	
Equus pizewaiskii	3	2	0	1	0	0	1	1	1
Gazella subgutturosa	3	2	1	1	0	0	0	1	1
	1	2	1	1	0	0	0	0	
Ovis ammon	3	2	0	1	0	0	0	1	1
Procapra picticaudata	3	2	0	1	0	0	0	1	1
Saiga tatarica	3	2	0	I	0	0	0	I	I
Steppe, Sarisy, Kazakhstan									
(IUCN site 133019)									
Capreolus pygargus	1	2	1	1	0	0	0	0	1
Equus hemionus	3	2	0	1	0	0	1	0	1
Gazella subgutturosa	3	2	0	1	0	0	0	1	1
Saiga tatarica	3	2	0	1	0	0	0	1	1
Sus scrota	1	0	0	0	1	1	0	0	1

Locality/species	Specimen	High	Low	Sharp	Rounded	Blunt
Dorn-Dürkheim 1						
Anisodon indet.	SMF DD449 (cast)	1			1	
Anisodon indet.	SMF DD no number (cast)) 1		1		
Anisodon indet.	SMF DD240	1		1		
Anisodon indet.	SMF DD230	1			1	
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD4626	1		1		
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD4305	1			1	
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD4394	1		1		
Cervidae, large (cf. <i>Procapreolus</i> /Muntiacinae)	SMF DD847	1		1		
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD3854	1		1		
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD4760	1			1	
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD815	1		1		
Cervidae, large (cf. <i>Procapreolus/</i> Muntiacinae)	SMF DD844	1		1		
Cervidae, large (cf. <i>Procapreolus/</i> Muntiacinae)	SMF DD804	1			1	
Cervidae, large (cf. <i>Procapreolus/</i> Muntiacinae)	SMF DD4089	1		1		
Cervidae, large (cf. <i>Procapreolus</i> /Muntiacinae)	SMF DD804	1			1	
Cervidae, large (cf. <i>Procapreolus/</i> Muntiacinae)	SMF DD4081	1			1	
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD4413	1			1	
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD827	1		1		
Cervidae, large (cf. Procapreolus/Muntiacinae)	SMF DD821	1		1		
Cervidae, large (cf. <i>Procapreolus/</i> Muntiacinae)	SMF DD811	1		1		
Cervidae, large (cf. <i>Procapreolus</i> /Muntiacinae)	SMF DD843	1			1	
Cervidae, small (cf. <i>Cervavitulus minimus</i>)	SMF DD 4100	1		1		
Cervidae, small (cf. <i>Cervavitulus minimus</i>)	SMF DD 4729	1		1		
Cervidae, small (cf. <i>Cervavitulus minimus</i>)	SMF DD 3807	1		1		
Cervidae, small (cf. <i>Cervavitulus minimus</i>)	SMF DD 919	1			1	
Cervidae, small (cf. <i>Cervavitulus minimus</i>)	SMF no number	1		1		
Hippotnerium primigenium	SMF DD5669	1		1		
Hippotnerium primigenium	SMF DD115	I		1		
Hippotnerium primigenium	SMF DD3867		I	I		
Hippotnerium primigenium	SMF DD3205	- 1			- 1	
Hippothenum primigenium	SMF DD3219	- 1		-	I	
Hippothenum primigenium	SMF DD113	- 1		1		
Hippothenum primigenium	SMF DD4300	1		1		
Hippothenum primigenium	SMF DD3722	I	4	I	4	
Hippothenum primigenium	SMF DD3766	4	1	-	I	
Hippotherium primigenium	SME DD65	1		1		
Hippotherium primigenium	SME DD5728	I	1	I	1	
Hippotherium kammerschmittae	SMF DD5652	1	1	1	1	
Hippotherium kammerschmittae	SMF DD3032	1		1		
Micromerux sp	SMF DD4274	1		1		
Micromeryx sp.	SMF DD4207	1		1		
Micromeryx sp.	SME DD306	1		1		
Microneryx sp. Mictragocerus indet	SME DD3940	1		1		
Miotragocerus indet.	SME DD337	1			1	
Miotragocerus indet	SMF DD582	1			1	
Mietragocerus indet.	SME DD574	1		1		
Mietragocerus indet.	SME DD335	1		1		
Mietragocerus indet.	SME DD352	1			1	
Miotragocerus indet	SMF DD3920	1		1		
Kohfidisch	0 000000					
Aceratherium? indet.	NHMW Koh 1962	1		1		
Caprinae indet, indet.	NHMW 129	1		1		
Caprinae indet. indet.	NHMW 129	1		1		

Appendix 2. Specimen-level mesowear data of ungulates from the Late Miocene localities.

Locality/species	Specimen	High	Low	Sharp	Rounded	Blunt
Caprinae indet. indet.	NHMW 130	1		1		
Caprinae indet. indet.	NHMW 130	1		1		
<i>Cervavitus</i> sp.	NHMW 33 (1958)	1		1		
<i>Cervavitus</i> sp.	NHMW 32 (1958)	1		1		
<i>Cervavitus</i> sp.	NHMW 32 (1958)	1		1		
<i>Cervavitus</i> sp.	NHMW 32 (1958)	1		1		
<i>Cervavitus</i> sp.	NHMW 32 (1958)	1		1		
<i>Cervavitus</i> sp.	NHMW IV/1 (1962)	1		1		
<i>Cervavitus</i> sp.	NHMW 38 (1957)	1		1		
<i>Euprox</i> sp.	NHMW 54 (1963 / III)	1		1		
<i>Euprox</i> sp.	NHMW 59	1		1		
<i>Euprox</i> sp.	NHMW 58 (1961, II, 2)	1			1	
Gazella aff. pilgrimi	NHMW no number	1			1	
Gazella aff. pilgrimi	NHMW 1965	1		1		
Gazella aff. pilgrimi	NHMW 1965	1			1	
Gazella aff. pilgrimi	NHMW 1965	1			1	
Gazella aff. pilgrimi	NHMW 1958.1/3	1		1		
Gazella aff. pilgrimi	NHMW 1956.1/5	1		1		
Gazella aff. pilgrimi	NHMW 1956.1/5	1		1		
Gazella aff. pilgrimi	NHMW 1956.1/6	1			1	
Gazella aff. pilgrimi	NHMW 1956.1/6	1		1		
Hippotherium indet.	NHMW No. 002246					
	(1972)	1			1	
Hippotherium indet.	NHMW No. 1973	1		1		
Hippotherium indet.	NHMW 14 (1981)	1		1		
Hippotherium indet.	NHMW 2 (1960)	1			1	
Hippotherium indet.	NHMW 3 (1961)	1		1		
Micromeryx indet.	NHMW 86 (1967,74,91)	1		1		
Micromeryx indet.	NHMW 86 (1967,74,91)	1		1		
Micromeryx indet.	NHMW 94	1		1		
Micromeryx indet.	NHMW 76 (AM 8)	1		1		
Micromeryx indet.	NHMW 98	1		1		
Miotragocerus indet.	NHMW 1982i	1		1		
Miotragocerus indet.	NHMW 1974/1686/39	1			1	
Orygotherium heinzi	NHMW 2004z0051/0003	1		1		
Orygotherium heinzi	NHMW Ko 14 (1963)	1		1		
Palaeoryx sp.	NHMW no number	1		1		
Palaeoryx sp.	NHMW 172 (1981)	1		1		
Palaeoryx sp.	NHMW 173	1		1		
Palaeoryx sp.	NHMW 173	1			1	
Palaeoryx sp.	NHMW 1980	1		1		
Palaeoryx sp.	NHMW 1980	1		1		
Procapreolus aff. lockzyi	NHMW 2005z0025/					
	0002-Anz:1	1		1		
Procapreolus aff. lockzyi	NHMW 105	1			1	
Procapreolus aff. lockzyi	NHMW 103	1		1		
Procapreolus aff. lockzyi	NHMW no number	1		1		
Procapreolus aff. lockzyi	NHMW no number	1		1		
Procapreolus aff. lockzyi	NHMW no number	1		1		
Procapreolus aff. lockzvi	NHMW no number	1		1		
Protoryx sp.	NHMW 182	1			1	
Protoryx sp.	NHMW 182	1		1		
Protoryx sp.	NHMW 182	1		1		
Protoryx sp.	NHMW 1957	1		1		
Protoryx sp.	NHMW 1957	1			1	

Locality/species	Specimen	High	Low	Sharp	Rounded	Blunt
Kohfidisch						
Tragoportax gaudryi	NHMW 142	1		1		
Tragoportax gaudryi	NHMW 155	1			1	
Tragoportax gaudryi	NHMW 153	1		1		
Tragoportax gaudryi	NHMW 143	1		1		
Tragoportax gaudryi	NHMW 143	1		1		
Tragoportax gaudryi	NHMW 143	1		1		
Maragheh						
Ancylotherium pentelici	MMTT37/2300	1		1		
Bohlinia attica	NHMUK-PV-M3867	1		1		
Bohlinia attica	CM458	1		1		
Chilotherium persiae	NHMW 2020/0014/0031	1		1		
Chilotherium persiae	NHMW 2020/0014/0003	1			1	
Chilotherium persiae	NHMW 2020/0014/0005	1		1		
Chilotherium persiae	NHMW 2020/0014/0091	1		1		
Chilotherium persiae	A4819	1		1		
Chilotherium persiae	A4822	1			1	
Chilotherium persiae	A4792	1		1		
Chilotherium persiae	A4805	1			1	
Cremohipparion aff. moldavicum	NHMW 2022/106/0004	1			1	
Cremohipparion aff. moldavicum	NHMW 2022/106/0002		1	1		
Cremohipparion aff. moldavicum	NHMUK-PV-M3924		1	1		
Cremohipparion matthewi	GIUP100-1958		1		1	
Cremohipparion moldavicum	MNHNMar_RLB7914	1		1		
Cremohipparion moldavicum	MNHNMar62	1			1	
Cremohipparion moldavicum	MNHNMar466	1			1	
Cremohipparion moldavicum	MNHNMar1476	1			1	
Cremohipparion moldavicum	MNHNMar469	1		1		
Cremohipparion moldavicum	MNHN.F.MAR3428		1	1		
Cremohipparion moldavicum	MNHN.F.MAR1477		1		1	
Cremohipparion aff. moldavicum	NHMW Mar-1808	1			1	
Cremohipparion aff. moldavicum	NHMW A 4848		1	1		
Cremohipparion aff. moldavicum	NHMW Mar-1809		1		1	
Criotherium argaloides	NHMUK-PV-M7412	1		1		
Gazella anycerus	MMTT13/MCW80	1		1		
Gazella indet.	NHMW Mar-3202	1			1	
Gazella indet.	NHMW Mar-3190		1		1	
Gazella indet.	NHMW Mar-3200	1			1	
Gazella indet.	NHMW Mar-3208	1			1	
Gazella indet.	NHMW Mar-2525		1	1		
Gazella indet.	NHMW Mar-2655	1			1	
Gazella indet.	NHMW Mar-2770	1			1	
Gazella indet.	NHMW Mar-2783		1		1	
Helladotherium duvernoyi	MMTT7/602	1			1	
Helladotherium duvernoyi	BSP 1973 XXI 60	1			1	
Palaeotragus coelophryes	BSP 1973 XXI 59	1		1		
Hipparion campbelli	MMTT 13/1342		1		1	
Hipparion campbelli	MMTT13/1342	1			1	
Hipparion campbelli	MMTT13/1291	1			1	
Hippotherium brachypus	NHMW 2022/105/0002		1		1	
Hippotherium brachypus	NHMW 2022/105/0001		1		1	
Hippotherium brachypus	MNHNMar1474	1			1	
Hippotherium brachypus	MNHNMar1475	1			1	
Hippotherium? brachypus?	NHMW Mar-1760	1			1	
Honanotherium bernori	MMTT7/2164	1			1	

Locality/species	Specimen	High	Low	Sharp	Rounded	Blunt
Maragheh						
Honanotherium bernori	MNHN MAR670	1		1		
Iranotherium morgani	NHMW 2020/0013/0002		1			1
Iranotherium morgani	NHMW 2014/0425/0001	1			1	
Iranotherium morgani	MNHN.F.MAR 1647					
	(skull)		1		1	
Miodiceros neumayri	NHMW 2014/0424/0001	1			1	
Miodiceros neumayri	NHMW 2014/0424/001a,					
	holotype	1			1	
Miotragocerus indet.	NHMUK-PV-M3838	1		1		
Oioceros atropatenes	MNHN.F.MAR3146	1		1		
Oioceros atropatenes	MMTT13/1206	1			1	
Oioceros atropatenes	MMTT13/1205	1		1		
Oioceros atropatenes	MMTT13/1357	1		1		
Oioceros atropatenes	MMTT13/1361	1		1		
Ovibovini? indet.?	NHMW Mar-2620	1		1		
Ovibovini? indet.?	NHMW Mar-2619	1		1		
Ovibovini? indet.?	NHMW Mar-2864	1			1	
Palaeoreas lindermayeri	MM117/2159		1		1	
Palaeoreas indet.	MMT17/2159		1		1	
Palaeoreas Indet.		1			1	
Palaeoreas Indet.	NHMW Mar-3209		1		1	
Palaeoreas Indet.	NHMW Mar-3219	1			1	
Palaeoreas indet.	NHIWW Mar-3220	1			1	
Palaeoreas indet.		1		4	I	
Palaeoreas indet.		1		I	4	
Protragolanhus skouzosi		1	1		1	
Protragolaphus skouzesi		4	1		1	
Protragelaphus skouzesi	MMTT7/2204	1			1	
Samoceros minotaurus	MNHNI E MAR3200	1			1	
Samotherium neumavri	NHMW Mar-3375	1			1	
Samotherium neumayri	NHMW Mar-3384	1			1	
Samotherium neumayri	NHMW Mar-3386	1			1	
Samotherium neumayri	NHMW Mar-3385	1			1	
Samotherium neumavri	NHMW Mar-3372	1		1		
Tragoportax amaltheus	NHMW Mar-2584	1		1		
Tragoportax amaltheus	NHMW Mar-2579	1			1	
Tragoportax amaltheus	NHMW Mar-2585	1			1	
Tragoportax amaltheus	NHMW Mar-2582	1			1	
Tragoportax amaltheus	NHMW Mar-2583	1			1	
Tragoportax amaltheus	NHMW Mar-2522	1			1	
Tragoportax amaltheus	NHMW Mar-2661	1			1	
Tragoportax amaltheus	NHMW Mar-2769	1			1	
Tragoportax amaltheus	MMTT13/1346	1			1	
Tragoportax amaltheus	NHMW Mar-2906	1			1	
Tragoportax amaltheus	NHMW Mar-2907	1			1	
Urmiatherium polaki	NHMW A 4916		1		1	
Urmiatherium polaki	NHMW Mar-2886	1			1	
Urmiatherium polaki	NHMW Mar-2885	1		1		
Urmiatherium polaki	DOE M356		1		1	
Mt. Luberon						
Gazella deperdita	MNHN.F.Lub-557	1			1	
Gazella deperdita	MNHN.F.Lub-515	1		1		
Gazella deperdita	MNHN.F.Lub-555	1			1	
					con	tinued

Mt. Luberon Gazella deperdita MNHN.F.Lub-550 1 1 Gazella deperdita MNHN.F.Lub-631 1 1 Hipparion prostylum MNHN.F.Lub-451 1 1 Hipparion prostylum MNHN.F.Lub-206 1 1 Hipparion prostylum MNHN.F.Lub-230 1 1 Hipparion prostylum MNHN.F.Lub-451 1 1 Hipparion prostylum MNHN.F.Lub-455 1 1 Hipparion prostylum MNHN.F.Lub-455 1 1 Hipparion prostylum MNHN.F.Lub-454 1 1 Hipparion prostylum MNHN.F.Lub-737 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Tragoportax amatheronis MNHN.F.Lub-719 1 1 Tragoportax amatherus MNHN.F.Lub-728 1 1 Ancylotherium pentelicum Univ.Wien 1754 1 1 Ancylotherium pentelicum Univ.Wien 1754 1 1 Ancylotherium pentelicum NHML.F.V-V-M10631	Locality/species	Specimen	High	Low	Sharp	Rounded	Blunt
Gazella deperdita MNI-NF. Lub-680 1 1 Hipparion prostylum MNI-NF. Lub-455 1 1 Hipparion prostylum MNI-NF. Lub-455 1 1 Hipparion prostylum MNI-NF. Lub-451 1 1 Hipparion prostylum MNI-NF. Lub-451 1 1 Hipparion prostylum MNI-NF. Lub-455 1 1 Hipparion prostylum MNI-NF. Lub-455 1 1 Hipparion prostylum MNI-NF. Lub-454 1 1 Hipparion prostylum MNI-NF. Lub-454 1 1 Hipparion prostylum MNI-NF. Lub-454 1 1 Hipparion prostylum MNI-NF. Lub-857 1 1 Hipparion prostylum MNI-NF. Lub-812 1 1 Tragoportax amatheronis MNI-NF. Lub-719 1 1 Tragoportax amatheronis MNI-NF. Lub-727 1 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 Ancylotherium pentelicum MNI-NF. Lub-727 1 1 </td <td>Mt. Luberon</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Mt. Luberon						
Gazella deperdita MNI-NF. Lub-651 1 1 Hipparion prostylum MNI-NF. Lub-266 1 1 Hipparion prostylum MNI-NF. Lub-230 1 1 Hipparion prostylum MNI-NF. Lub-230 1 1 Hipparion prostylum MNI-NF. Lub-455 1 1 Hipparion prostylum MNI-NF. Lub-456 1 1 Hipparion prostylum MNI-NF. Lub-454 1 1 Hipparion prostylum MNI-NF. Lub-454 1 1 Hipparion prostylum MNI-NF. Lub-857 1 1 Hipparion prostylum MNI-NF. Lub-857 1 1 Hipparion prostylum MNI-NF. Lub-812 1 1 Pliocervus matheronis MNI-NF. Lub-728 1 1 Tragoportax amaltheus MNI-NF. Lub-728 1 1 Ancylotherium pentelicum NHMU-F. Lub-727 1 1 Ancylotherium pentelicum NHMU-F. Lub-728 1 1 Ancylotherium pentelicum NHMU-F. Lub-727 1 1 <	Gazella deperdita	MNHN.F.Lub-550	1		1		
Hipparion prostylum MNHN F.Lub-36 1 1 Hipparion prostylum MNHN F.Lub-260 1 1 Hipparion prostylum MNHN F.Lub-230 1 1 Hipparion prostylum MNHN F.Lub-31 1 1 Hipparion prostylum MNHN F.Lub-43 1 1 Hipparion prostylum MNHN F.Lub-44 1 1 Hipparion prostylum MNHN F.Lub-454 1 1 Hipparion prostylum MNHN F.Lub-857 1 1 Hipparion prostylum MNHN F.Lub-857 1 1 Hipparion prostylum MNHN F.Lub-812 1 1 Hipparion prostylum MNHN F.Lub-719 1 1 Pilocervus matheronis MNHN F.Lub-728 1 1 Tragoportax amatheus MNHN F.Lub-727 1 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 Ancylotherium pentelicum MHMUK-PV-M4064 1 1 Ancylotherium pentelicum MHMUK-PV-M40355 1 1	Gazella deperdita	MNHN.F.Lub-681	1		1		
Hipparion prostylum MNHN, FLub-206 1 1 Hipparion prostylum MNHN, FLub-230 1 1 Hipparion prostylum MNHN, FLub-230 1 1 Hipparion prostylum MNHN, FLub-355 1 1 Hipparion prostylum MNHN, FLub-464 1 1 Hipparion prostylum MNHN, FLub-454 1 1 Hipparion prostylum MNHN, FLub-857 1 1 Hipparion prostylum MNHN, FLub-857 1 1 Hipparion prostylum MNHN, FLub-788 1 1 Pilocervus matheronis MNHN, FLub-719 1 1 Tragoportax amaltheus MNHN, FLub-728 1 1 Tragoportax amaltheus MNHN, FLub-727 1 1 Pikermi 1 1 1 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 1 Ancylotherium pentelicum NHMUK, PV-M1063 1 1 1 Cremohipparion mediterraneum NHMUK, PV-M11337 1 </td <td>Hipparion prostylum</td> <td>MNHN.F.Lub-45</td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td>	Hipparion prostylum	MNHN.F.Lub-45		1		1	
Hipparion prostylum MNHN, F.Lub-451 1 Hipparion prostylum MNHN, F.Lub-230 1 1 Hipparion prostylum MNHN, F.Lub-455 1 1 Hipparion prostylum MNHN, F.Lub-444 1 1 Hipparion prostylum MNHN, F.Lub-454 1 1 Hipparion prostylum MNHN, F.Lub-857 1 1 Hipparion prostylum MNHN, F.Lub-857 1 1 Hipparion prostylum MNHN, F.Lub-854 1 1 Pilocervus matheronis MNHN, F.Lub-728 1 1 Tragoportax amaltheus MNHN, F.Lub-728 1 1 Tragoportax amaltheus MNHN, F.Lub-727 1 1 Ancylotherium pentelicum NihW, V.E.Ub-727 1 1 Ancylotherium pentelicum NHMUK-PV-M4064 1 1 Accorohinum nedieus AMPG: K4/119.37 1 1 Bohlinia attica MNHN, Pik-1661 1 1 Bohlinia attica MNHN, Pik-1661 1 1 Crem	Hipparion prostylum	MNHN.F.Lub-206		1		1	
Hipparion prostylum MNHN, F.Lub-230 1 1 Hipparion prostylum MNHN, F.Lub-455 1 1 Hipparion prostylum MNHN, F.Lub-455 1 1 Hipparion prostylum MNHN, F.Lub-454 1 1 Hipparion prostylum MNHN, F.Lub-857 1 1 Hipparion prostylum MNHN, F.Lub-857 1 1 Hipparion prostylum MNHN, F.Lub-857 1 1 Hipparion prostylum MNHN, F.Lub-788 1 1 Pilocervus matheronis MNHN, F.Lub-719 1 1 Tragoportax amaltheus MNHN, F.Lub-728 1 1 Tragoportax amaltheus MNHN, F.Lub-727 1 1 Ancylotherium pentelicum NHM, K.Pub-727 1 1 Ancylotherium pentelicum NHM, K.Pub-737 1 1 Ancylotherium pentelicum NHM, K.Pub-7461 1 1 Ancylotherium pentelicum NHM, K.Pub-7450 1 1 Cremohipparion mediterraneum NHMUK, PV-M10237 1	Hipparion prostylum	MNHN.F.Lub-451		1	1		
Hipparion prostylum MNHN.F.Lub-91 1 Hipparion prostylum MNHN.F.Lub-455 1 1 Hipparion prostylum MNHN.F.Lub-44 1 1 Hipparion prostylum MNHN.F.Lub-97 1 1 Hipparion prostylum MNHN.F.Lub-797 1 1 Hipparion prostylum MNHN.F.Lub-798 1 1 Pilocervus matheronis MNHN.F.Lub-798 1 1 Pilocervus matheronis MNHN.F.Lub-719 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-727 1 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 Ancylotherium pentelicum NHMUK-PV-M1064 1 1 Aberorhinus neleus AMPG: K4/119.37 1 1 Bohlinia attica MNHN.F.Lub-789 1 1 Cremohipparion mediterraneum NHMUK-PV-M10237 1 1 Cremohipparion mediterraneum NHMUK-PV-M10237 1 1	Hipparion prostylum	MNHN.F.Lub-230		1		1	
Hipparion prostylum MNHN.F.Lub-455 1 1 Hipparion prostylum MNHN.F.Lub-44 1 1 Hipparion prostylum MNHN.F.Lub-97 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Hipparion prostylum MNHN.F.Lub-798 1 1 Plicoervus matheronis MNHN.F.Lub-719 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-727 1 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 Ancylotherium pentelicum NHMUK-PV-M4064 1 1 Bohlinia attica MNHN.Fik-1610 1 1 Bohlinia attica MNHN.Fik-1610 1 1 Cremohipparion mediterraneum NHMUK-PV-M16395 1 1 Cremohipparion mediterraneum NHMUK-PV-M16395 1 1 Cremohipparion mediterraneum NHMUK-PV-M16396 1 1	Hipparion prostylum	MNHN.F.Lub-91		1	1		
Hipparion prostylum MNHN.F.Lub-44 1 1 Hipparion prostylum MNHN.F.Lub-454 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Pilocervus matheronis MNHN.F.Lub-798 1 1 Pilocervus matheronis MNHN.F.Lub-719 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-727 1 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 Acerorhinus neleus AMPC: K4/119.37 1 1 Bohlinia attica MNHN.Pik-1661 1 1 Bohlinia attica BSP AS II 640 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393 1 1<	Hipparion prostylum	MNHN.F.Lub-455		1		1	
Hipparion prostylum MNHN.F.Lub-454 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Hipparion prostylum MNHN.F.Lub-786 1 1 Pilocervus matheronis MNHN.F.Lub-786 1 1 Pilocervus matheronis MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-727 1 1 Pilkermi	Hipparion prostylum	MNHN.F.Lub-44		1		1	
Hipparion prostylum MNHN.F.Lub-97 1 1 1 Hipparion prostylum MNHN.F.Lub-857 1 1 Pilocervus matheronis MNHN.F.Lub-798 1 1 Pilocervus matheronis MNHN.F.Lub-798 1 1 Tragoportax amaltheus MNHN.F.Lub-719 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Pilocervus matheronis MNHN.F.Lub-727 1 1 Ancyotherium pentelicum Univ. Wien 1754 1 1 Ancyotherium pentelicum NHMUK-PV-M4064 1 1 Acerorhinus neleus AMPG: K4/119.37 1 1 Bohlinia attica MNHN.Pik-1610 1 1 Bohlinia attica MNHW.PV-M16395 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393	Hipparion prostylum	MNHN.F.Lub-454	1		1		
Hipparion prostylum MNHN.F.Lub-857 1 1 Hipparion prostylum MNHN.F.Lub-854 1 1 Pilocervus matheronis MNHN.F.Lub-798 1 1 Pilocervus matheronis MNHN.F.Lub-719 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Pilocervus matheronis MNHN.F.Lub-728 1 1 Piloemi	Hipparion prostylum	MNHN.F.Lub-97		1			1
Hipparion prostylum MNHN.F.Lub-934 1 1 Pliocervus matheronis MNHN.F.Lub-738 1 1 Pliocervus matheronis MNHN.F.Lub-738 1 1 Tragoportax amaltheus MNHN.F.Lub-719 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-728 1 1 Pikermi	Hipparion prostylum	MNHN.F.Lub-857		1		1	
Pilocervus matheronis MNHN.F.Lub-798 1 1 Pilocervus matheronis MNHN.F.Lub-719 1 1 Tragoportax amaliheus MNHN.F.Lub-719 1 1 Tragoportax amaliheus MNHN.F.Lub-728 1 1 Tragoportax amaliheus MNHN.F.Lub-728 1 1 Pilocervus amaliheus MNHN.F.Lub-727 1 1 Pilor 1 1 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 Acerorhinus neleus AMPG: K4/19.37 1 1 Bohlinia attica MNHN.Pik-1661 1 1 Bohlinia attica MNHN.Pik-1640 1 1 Cremohipparion mediterraneum NHMUK-PV-M11895 1 1 Cremohipparion mediterraneum NHMUK-PV-M10237 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M10237 1 1 Cremohipparion mediterraneum NHMUK-PV-M10333 1 1	Hipparion prostylum	MNHN.F.Lub-854		1		1	
Pilocervus matheronis MNHN.F.Lub-812 1 Tragoportax amaltheus MNHN.F.Lub-728 1 Tragoportax amaltheus MNHN.F.Lub-728 1 Tragoportax amaltheus MNHN.F.Lub-728 1 Pikermi 1 Ancylotherium pentelicum Univ. Wien 1754 1 1 Ancylotherium pentelicum NHMUK-PV-M4064 1 1 Bohlinia attica MNHN.Fi.Lub-661 1 1 Bohlinia attica MNHN.Pik-16610 1 1 Bohlinia attica BSP AS II 640 1 1 Cremohipparion mediterraneum NHMUK-PV-M16395 1 1 Cremohipparion mediterraneum NHMUK-PV-M11189 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393 1 1 Cremohipparion mediterraneum NHMUK-PV-M16396 1 1 Cremohipparion mediterraneum NHMW 1863/0001/0019 1 1 Cremohipparion mediterraneum NHMW 1863/0001/0028	Pliocervus matheronis	MNHN.F.Lub-798	1			1	
Tragoportax amaliheus MNHN.F.Lub-719 1 1 Tragoportax amaliheus MNHN.F.Lub-728 1 1 Tragoportax amaliheus MNHN.F.Lub-727 1 1 Pikermi	Pliocervus matheronis	MNHN.F.Lub-812	1		1		
Tragoportax amaltheus MNHN.F.Lub-728 1 1 Tragoportax amaltheus MNHN.F.Lub-727 1 1 Pikermi Image: Comparison of the second of	Tragoportax amaltheus	MNHN.F.Lub-719	1			1	
Tragoportax amaltheus MNHN.F.Lub-727 1 1 Pikermi Ancylotherium pentelicum Univ. Wien 1754 1 1 Ancylotherium pentelicum NHMUK-PV-M4064 1 1 Accorphinus neleus AMPG: K4/119.37 1 1 Bohlinia attica MNHN.Pik.1661 1 1 Bohlinia attica MNHN.Pik.1610 1 1 Cremohipparion mediterraneum NHMUK-PV-M16395 1 1 Cremohipparion mediterraneum NHMUK-PV-M1189 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M18392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393 1 1 Cremohipparion mediterraneum NHMUK-PV-M1033/0028 1 1 Cremohipparion mediterraneum NHMW 1863/0001/0019 1 1 Dihoplus pikermiensis NHMW 1863/0001/0019 1 1 Dihoplus pikermiensis NHMW 1863/0001/0019 1 1 Dihoplus pikermiensis NHMW 1863/0001/0019 1 1 Dih	Tragoportax amaltheus	MNHN.F.Lub-728	1			1	
Prikemi Ancylotherium pentelicum Univ. Wien 1754 1 1 Ancylotherium pentelicum NHMUK-PV-M4064 1 1 Accrothinus neleus AMPG: K4/119.37 1 1 Bohlinia attica MNHN.Pik-1661 1 1 Bohlinia attica MSNN.Pik-1610 1 1 Bohlinia attica BSP AS II 640 1 1 Cremohipparion mediterraneum NHMUK-PV-M118395 1 1 Cremohipparion mediterraneum NHMUK-PV-M11189 1 1 Cremohipparion mediterraneum NHMUK-PV-M116392 1 1 Cremohipparion mediterraneum NHMUK-PV-M1178 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393 1 1 Cremohipparion mediterraneum NHMW 1854/0003/0028 1 1 Cremohipparion mediterraneum NHWW 1854/0003/0028 1 1 Dihoplus pikermiensis NHMW 1863/0001/00019 1 1 Dihoplus pikermiensis NHMW 4672 1 1 Dihoplus	Tragoportax amaltheus	MNHN.F.Lub-727	1		1		
Ancylotherium pentelicum Univ. Wien 1/54 1 1 Ancylotherium pentelicum NHMUK-PV-M4064 1 1 Acerorihinus neleus AMPG: K4/119.37 1 1 Bohlinia attica MNHN.Pik-1661 1 1 Bohlinia attica MNHN.Pik-1610 1 1 Bohlinia attica BSP AS II 640 1 1 Cremohipparion mediterraneum NHMUK-PV-M16395 1 1 Cremohipparion mediterraneum NHMUK-PV-M10237 1 1 Cremohipparion mediterraneum NHMUK-PV-M10392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16392 1 1 Cremohipparion mediterraneum NHMUK-PV-M16393 1 1 Cremohipparion mediterraneum NHMW-PV-M10333 1 1 Cremohipparion mediterraneum NHMW 1863/0001/0019 1 1 Dihoplus pikermiensis NHMW 1863/0001/0019 1 1 Dihoplus pikermiensis NHMUK-PV-M10142 1 1 Dihoplus pikermiensis NHMW-GEO-2009/	Pikermi						
Ancylotherium pertelicumNHMUK-PV-M406411Acerorhinus neleusAMPG: K4/119.3711Bohlinia atticaMNHN.Pik-166111Bohlinia atticaMNHN.Pik-161011Bohlinia atticaBSP AS II 64011Cremohipparion mediterraneumNHMUK-PV-M1639511Cremohipparion mediterraneumNHMUK-PV-M1023711Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/003/002811Cremohipparion mediterraneumNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW-RE-V-M1014311Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 463/001/001911Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMW 1863.1.4711Gazella capricornisNHMW 1864.11.3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMHNH Nehibitor mandible11Hipopherium brachypusNHMW-ReV-M1148	Ancylotherium pentelicum	Univ. Wien 1754	1		1		
Accerofininus neleusAMPG: R4/119.3711Bohlinia atticaMNHN.Pik-166111Bohlinia atticaBSP AS II 64011Bohlinia atticaBSP AS II 64011Cremohipparion mediterraneumNHMUK-PV-M11639511Cremohipparion mediterraneumNHMUK-PV-M1023711Cremohipparion mediterraneumNHMUK-PV-M1023711Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMW 1863/001/001911Gazella capricornisNHMW 1863.14711Gazella capricornisNHMW 1863.14711Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHW NHN exhibition mandible1Hipopherium brachypusNHMW 1864 III.8811<	Ancylotherium pentelicum		1		1		
Bohlinia atticaMINHN.PIK-1601IIBohlinia atticaMINHN.Pik-161011Bohlinia atticaBSP AS II 64011Cremohipparion mediterraneumNHMUK-PV-M1639511Cremohipparion mediterraneumNHMUK-PV-M10023711Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1863/0001/012a11Cremohipparion mediterraneumNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 1863/001/001911Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMW 1863/001/001911Gazella capricornisNHMW 1864 III.3311Heladotherium duvernoyiMHW 1854 III.3311Heladotherium duvernoyiMHW 1854 III.3311Heladotherium duvernoyiMHW 1854 III.3311Heladotherium duvernoyiMH	Acerorhinus neleus	AMPG: K4/119.37	1		1		
Bohlinia atticaMINHIN, Pik-161011Bohlinia atticaBSP AS II 64011Cremohipparion mediterraneumNHMUK-PV-M1639511Cremohipparion mediterraneumNHMUK-PV-M10023711Cremohipparion mediterraneumNHMUK-PV-M1039211Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1038/001911Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1863/0001/002811Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW-PV-M1014311Dihoplus pikermiensisNHMW-PV-M1014211Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Gazella capricornisNHMW 1863/001/001911Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1861 II. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHW 1854 III. 3311Helladotherium duvernoyiNHM	Bonlinia attica	MINHIN PIK-1661	1		1		
Bohr As II o40IICremohipparion mediterraneumNHMUK-PV-M1639511Cremohipparion mediterraneumNHMUK-PV-M1118911Cremohipparion mediterraneumNHMUK-PV-M1023711Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1863/0001/0102a11Cremohipparion mediterraneumNHMW 1863/0001/0001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014411Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMUK-PV-M1144011Gazella capricornisNHMW 1860 XXXII 2111Heladotherium duvernoyiGaudry 1861 skull11Heladotherium duvernoyiMNHW 1854 lll. 3311Heladotherium duvernoyiNHMW 1861 skull11Hipotherium duvernoyiNHMW 1854 lll. 81 <td>Bonlinia attica</td> <td>MINHIN.PIK-1610</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td>	Bonlinia attica	MINHIN.PIK-1610	1		1		
Cremonipparion mediterraneumNHMUK-PV-M1139511Cremohipparion mediterraneumNHMUK-PV-M11023711Cremohipparion mediterraneumNHMUK-PV-M10023711Cremohipparion mediterraneumNHMUK-PV-M1039211Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 2017/0038/001911Cremohipparion mediterraneumNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/001/001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/001/001911Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMW 1863.L4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1864 III. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiNHMW 1864 III. 3311	Boniinia attica	BSP AS II 640	I		I		
Cremohipparion mediterraneumNHMUK-PV-M110923711Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1863/0001/0102a11Cremohipparion mediterraneumNHMW 1863/0001/001911Cremohipparion mediterraneumNHMW 1863/0001/0001911Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/001/001911Dihoplus pikermiensisNHMW 1863.1.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11		NHIVIUK DV M11190	4	I	4	I	
Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639211Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863.1.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMHN exhibition mandible11Hipoptherium brachypusNHMUK-PV-M1114811			I	4	1		
Cremohipparion mediterraneumNHMUK-PV-M1117811Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 1863/0001/001911Cremohipparion mediterraneumNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Gazella capricornisNHMW 1863/1.4711Gazella capricornisNHMW 1863/1.4711Gazella capricornisNHMW 1863/1.4711Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN xxibition mandible11Helladotherium duvernoyiNHMW 186311	Cremohipparion mediterraneum		-	I	1		
Cremohipparion mediterraneumNHMUK-PV-M1639611Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMUK-PV-M1639311Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 2017/0038/001911Cremohipparion mediterraneumNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014411Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW 866O-2009/z/0085/000111Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/001/001911Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMW 1863/XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1864 III. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Cremohipparion mediterraneum		1	4	I	4	
Cremonipparion mediterraneumNHMUK-PV-M163931Cremohipparion mediterraneumNHMUK-PV-M163931Cremohipparion mediterraneumNHMW 1854/0003/00281Cremohipparion mediterraneumNHMW 2017/0038/00191Cremohipparion mediterraneumNHMW 1863/0001/0102a1Dihoplus pikermiensisNHMW 1863/0001/000191Dihoplus pikermiensisNHMUK-PV-M101431Dihoplus pikermiensisNHMUK-PV-M101441Dihoplus pikermiensisNHMUK-PV-M101421Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/001/001911Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMUK-PV-M1144111Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1861 kull11Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Cremohipparion mediterraneum	NHMUK-PV-M16396		1	1	I	
Cremohipparion mediterraneumNHMURT vintosos11Cremohipparion mediterraneumNHMW 1854/0003/002811Cremohipparion mediterraneumNHMW 2017/0038/001911Cremohipparion mediterraneumNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014411Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/L4711Gazella capricornisNHMW 1863/L4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1861 kull11Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Cremohipparion mediterraneum	NHMUK-PV-M16393	1	1	1		
Cremotinpparion mediterraneumNHMW 1037/0038/001011Cremohipparion mediterraneumNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/L4711Gazella capricornisNHMW 1863/L4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1864 III. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium brachypusNHMUK-PV-M1118811	Cremohipparion mediterraneum	NHMW 1854/0003/0028	'	1	1		
Cremohipparion mediterraneumNHMW 1863/0001/0102a11Cremohipparion mediterraneumNHMW 1863/0001/0102a11Dihoplus pikermiensisNHMW 1863/0001/0001911Dihoplus pikermiensisNHMUK-PV-M1014311Dihoplus pikermiensisNHMUK-PV-M1014411Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Dihoplus pikermiensisNHMW 1863/0001/001911Gazella capricornisNHMW 1863.1.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1861 kull11Helladotherium duvernoyiGaudry 1861 skull11Helladotherium brachypusNHMUK-PV-M1118811	Cremohipparion mediterraneum	NHMW 2017/0038/0019		1	1		
Dichnic plantin metalerina in think in the following of the plantin metalerina in the following of the plantin metalerina in the plantin the plantin metalerin	Cremohipparion mediterraneum	NHMW 1863/0001/01022		1	1		
Dihopius pikermiensisNHMW 1000010011011Dihoplus pikermiensisNHMUK-PV-M1014311Dihopius pikermiensisNHMUK-PV-M1014411Dihopius pikermiensisNHMW-GEO-2009/z/0085/000111Dihopius pikermiensisNHMW 467211Dihopius pikermiensisNHMW 467211Dihopius pikermiensisNHMW 1863/0001/001911Gazella capricornisNHMUK-PV-M1144011Gazella capricornisNHMW 1863.1.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Dihonlus nikermiensis	NHMW 1863/0001/01022	1	1	1		
Dihopius pikermiensisNHMUK-PV-M1014011Dihopius pikermiensisNHMUK-PV-M1014211Dihopius pikermiensisNHMW-GEO-2009/z/0085/000111Dihopius pikermiensisNHMW A 467211Dihopius pikermiensisNHMW 1863/0001/001911Diacella capricornisNHMW Na 467211Gazella capricornisNHMW 1863/L4711Gazella capricornisNHMW 1863.L4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Dihoplus pikermiensis	NHMUK-PV-M10143	1		1		
Dihoplus pikermiensisNHMUK-PV-M1014211Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW 467211Dihoplus pikermiensisNHMW 1863/0001/001911Gazella capricornisNHMUK-PV-M1144011Gazella capricornisNHMW 1863.I.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Dihoplus pikermiensis	NHMUK-PV-M10144	1		1		
Dihoplus pikermiensisNHMW-GEO-2009/z/0085/000111Dihoplus pikermiensisNHMW A 467211Dihoplus pikermiensisNHMW 1863/0001/001911Gazella capricornisNHMUK-PV-M1144011Gazella capricornisNHMW 1863.1.4711Gazella capricornisNHMW 1860.XXXII 2111Gazella capricornisNHMW 1860.XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Dihoplus pikermiensis	NHMUK-PV-M10142	1		1		
Dihoplus pikermiensisNHMW A 467211Dihoplus pikermiensisNHMW 1863/0001/001911Gazella capricornisNHMUK-PV-M1144011Gazella capricornisNHMUK-PV-M1144111Gazella capricornisNHMW 1863.1.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Dihoplus pikermiensis	NHMW-GEO-2009/z/0085/0001	1			1	
Dihoplus pikermiensisNHMW 1863/001/001911Dihoplus pikermiensisNHMW 1863/001/001911Gazella capricornisNHMUK-PV-M1144011Gazella capricornisNHMW 1863.1.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Dihoplus pikermiensis	NHMW A 4672	1		1		
Gazella capricornisNHMUK-PV-M1144011Gazella capricornisNHMUK-PV-M1144111Gazella capricornisNHMW 1863.I.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1860 XXXII 2111Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Dihoplus pikermiensis	NHMW 1863/0001/0019	1		1		
Gazella capricornisNHMUK-PV-M1144111Gazella capricornisNHMW 1863.I.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1854 III. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Gazella capricornis	NHMUK-PV-M11440	1		1		
Gazella capricornisNHMW 1863.I.4711Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1854 III. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Gazella capricornis	NHMUK-PV-M11441	1		•	1	
Gazella capricornisNHMW 1860 XXXII 2111Gazella capricornisNHMW 1854 III. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Gazella capricornis	NHMW 1863 I 47	1		1	•	
Gazella capricornisNHMW 1854 III. 3311Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Gazella capricornis	NHMW 1860 XXXII 21	1		1		
Helladotherium duvernoyiGaudry 1861 skull11Helladotherium duvernoyiMNHN exhibition mandible11Hippotherium brachypusNHMUK-PV-M1118811	Gazella capricornis	NHMW 1854 III. 33	1		-	1	
Helladotherium duvernoyi MNHN exhibition mandible 1 1 Hippotherium brachypus NHMUK-PV-M11188 1 1	Helladotherium duvernovi	Gaudry 1861 skull	1		1		
Hippotherium brachypus NHMUK-PV-M11188 1 1	Helladotherium duvernovi	MNHN exhibition mandible	1		1		
	Hippotherium brachvous	NHMUK-PV-M11188	1		-	1	
Hippotherium brachypus NHMUK-PV-M11170 1 1	Hippotherium brachvpus	NHMUK-PV-M11170	1			1	
Hippotherium brachypus NHMUK-PV-M11183 1 1	Hippotherium brachvpus	NHMUK-PV-M11183	1		1	-	
Hippotherium brachypus NHMUK-PV-M11191 1 1	Hippotherium brachypus	NHMUK-PV-M11191		1	-	1	
Hippotherium brachypus NHMUK-PV-M11185 1 1	Hippotherium brachypus	NHMUK-PV-M11185	1		1		

Locality/species	Specimen	High	Low	Sharp	Rounded	Blunt
Pikermi						
Hippotherium brachypus	NHMW 1860/0032/0002b	1			1	
Hippotherium brachypus	NHMW 1863/0001/0095	1		1		
Hippotherium brachypus	NHMW 1863/0001/0096		1		1	
Miodiceros neumayri	MNHN.Pik-3676	1			1	
Miodiceros neumayri	MNHN.Pik-936	1		1		
Miodiceros neumayri	MNHN.Pik-934	1			1	
Miodiceros neumayri	MNHN.Pik-960	1			1	
Miodiceros neumayri	MNHN.Pik-968	1		1		
Miodiceros neumayri	MNHN.F.PIK 1311	1		1		
Miodiceros neumayri	MNHN.Pik-971	1			1	
Miotragocerus valenciennesi	NHMUK-PV-M11431	1		1		
Miotragocerus valenciennesi	NHMUK-PV-M11431	1		1		
Miotragocerus valenciennesi	NHMUK-PV-M11431	1		1		
Miotragocerus valenciennesi	NHMUK-PV-M11450	1		1		
Miotragocerus valenciennesi	NHMUK-PV-M11452	1		1		
Miotragocerus valenciennesi	NHMUK-PV-M12979	1		1		
Miotragocerus valenciennesi	NHMUK-PV-M11430	1			1	
Oioceros rothii	MNHN.Pik-2240a	1		1		
Oioceros rothii	MNHN.Pik-2240b	1		1		
Oioceros rothii	MNHN.Pik-2242	1			1	
Oioceros rothii	PG 95/1502a	1		1		
Palaeoreas lindermayeri	NHMUK-PV-M110843	1		1		
Palaeoreas lindermayeri	NHMUK-PV-M11447	1			1	
Palaeoreas lindermayeri	NHMUK-PV-M11447	1		1		
Palaeoreas lindermayeri	NHMUK-PV-M11447	1		1		
Palaeoreas lindermayeri	NHMUK-PV-M11447	1		1		
Palaeoreas lindermayeri	NHMUK-PV-M13013	1		1		
Palaeoreas lindermayeri	NHMUK-PV-M13010	1		1		
Palaeoryx pallasi	NHMUK-PV-M110832	1		1		
Palaeoryx pallasi	NHMUK-PV-M110831	1			1	
Palaeoryx pallasi	NHMUK-PV-M11416	1		1		
Palaeoryx pallasi	NHMUK-PV-M13001	1		1		
Palaeotragus rouenii	MNHN.F.PIK 1670	1		1		
Palaeotragus rouenii	NHMUK-PV-M11419	1		1		
Palaeotragus rouenii	NHMUK-PV-M11419	1		1		
Pliocervus pentelici	NHMUK-PV-M11484	1		1		
Prostrepsiceros rotundicornis	BSP AS II 635	1			1	
Protoryx carolinae	NHMUK-PV-M11415	1		1		
Protoryx carolinae	NHMUK-PV-M10839	1			1	
Protragelaphus skouzesi	BSP AS II 539	1		1		
Protragelaphus skouzesi	NHMUK-PV-11439	1		1		
Sporadotragus parvidens	NHMUK-PV-M110833	1			1	
Sporadotragus parvidens	MNHN.Pik-2451	1		1		
Tragoportax amaltheus	NHMUK-PV-M11425	1		1		
Tragoportax amaltheus	NHMUK-PV-M12978	1		1		
Tragoportax amaltheus	NHMUK-PV-M11425	1		1		
Tragoportax amaltheus	NHMUK-PV-M11424	1			1	
Tragoportax amaltheus	NHMUK-PV-M11427	1			1	
Tragoportax amaltheus	NHMW 1854/0003/0034	1			1	
Tragoportax amaltheus	NHMW 1860/0032/0021	1		1		
Tragoportax amaltheus	NHMW 1863/0001/0067	1			1	
Tragoportax amaltheus	NHMW 1863/0001/0066	1			1	
Tragoportax amaltheus	NHMW 1863/0001/0065	1		1		
Tragoportax amaltheus	NHMW 1863/0001/0069	1		1		

Locality/species	Specimen	High	Low	Sharp	Rounded	Blunt
Lukeino						
Hipparionini indet. indet.	KNM-LU-711	1			1	
Hipparionini indet. indet.	KNM-LU-705		1	1		
Tragelaphus spekei?	KNM-LU-592	1			1	
Tragelaphus spekei?	KNM-LU-595	1		1		
Bovidae indet. indet. (large, hypsodont)	KNM-LU-11117	1		1		
Lothagam (Nawata)						
Alcelaphini indet. indet.	KNM-LT-222	1			1	
Alcelaphini indet. indet.	KNM-LT-507		1			1
Alcelaphini indet. indet.	KNM-LT-23130		1			1
Aepyceros praemelampus	KNM-LT-25985	1		1		
Madogua indet.	KNM-LT-177	1		1		
Boselaphini indet. indet.	KNM-LT-26070	1			1	
Boselaphini indet. indet.	KNM-LT-13015	1		1		
Boselaphini indet. indet. (small)	KNM-LT-13016	1			1	
Boselaphini indet. indet. (small)	KNM-LT-26005	1		1		
Boselaphini indet. indet.	KNM-LT-28574	1			1	
Tragelaphus kyaloae?	KNM-LT-25964	1		1		
Bovini indet. indet.	KNM-LT-476A	1			1	
Bovini indet. indet.	KNM-LT-480	1			1	
Palaeotragus germaini	KNM-LT-414	1		1		
Sivalhippus turkanense	KNM-LT-136 (holotype)		1			1
Sivalhippus turkanense	KNM-LT-25464	1		1		
Sivalhippus turkanense	KNM-LT-26293	1		1		
Eurygnathohippus feibeli	KNM-LT-23687		1		1	
Eurygnathohippus feibeli	KNM-LT-25468		1		1	
Eurygnathohippus feibeli	KNM-LT-25486		1		1	
Eurygnathohippus feibeli	KNM-LT-141		1		1	
Brachypotherium lewisi	KNM-LT-94	1				1
Brachypotherium lewisi	KNM-LT-22874	1			1	
Brachypotherium lewisi	KNM-LT-88	1			1	