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The dynamics of a self-organised model of shoaling fish are explored within a 
Lagrangian (or individual based) framework in order to identify the key behavioural 
factors that shape its dynamic landscape. By exploring systematically all possible 
initial states we identify the transitions to and between the different possible station-
ary states (schooling vs. swarming or milling). The route to these stationary states is 
explained from an individual perspective. On the behavioural level we discuss in par-
ticular the decisive impact of two traits, the perception angle and the manoeuvrability 
of the fish. A key result of this study is that the fish density in certain stationary states 
reaches values where each fish perceives each other; local interactions actually become 
global interactions. We further discuss the specific value of such Lagrangian studies in 
comparison to analytical approaches, in particular the freedom to include any impor-
tant biological trait and the importance of an exhaustive numerical investigation.

Introduction

One of the most fascinating features of collective 
fish behaviour is their ability to move around 
in closed groups (Keenleyside 1955, Radakov 
1973, Giske et al. 1998, Becco et al. 2006). 
About half the fish species are known to form 
such aggregation patterns at least at one stage 
of their life history. This collective behaviour 
can be found at the larval stage and can remain 
an obligate behavioural feature throughout their 
lifespan (Pitcher & Parrish 1993). Moreover, 
aggregation behavior provides protection against 
predators and in some cases increases foraging 
efficiency and reproduction rates (Pitcher & Par-
rish 1993, Hoare et al. 2004).

Fish can form loosely structured groups 
(called shoals) or highly organised structures 
(called schools) with synchronized movements 
and correlated headings (Pitcher 1983). Fish 
schools can be understood as self-organised sys-
tems since they do not need leaders or external 
stimuli to avoid splitting up, move cohesively 
and adopt a common direction (Hammer & Par-
rish 1997, Parrish & Edelstein-Keshet 1999). 
School dynamics emerges from numerous mutual 
interactions between individuals that are within a 
limited perception range. The individual move-
ment decision only depends on its neighbours’ 
positions and headings.

Based on optomotor reaction schemes, fish 
can consistently maintain the parallel orienta-
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tion with neighbours, whether they are at the 
head, the middle or the rear end of the school 
(Shaw & Tucker 1965). This visual detection is 
complemented by a specific sensory device, the 
lateral line, which is sensitive to variations of 
water pression around the body of the fish, and 
can provide informations about movement speed 
and orientation of close neighbours (Partridge & 
Pitcher 1980).

While only few studies have tried to disen-
tangle the underlying behavioural mechanisms 
(Aoki 1980, Parrish & Turchin 1997, Reebs 
2001, Suzuki 2003, Grünbaum et al. 2004, 
Tien et al. 2004), many theoretical models have 
emerged to build a conceptual framework in 
order to identify the involved mechanisms at 
least qualitatively (Aoki 1982, Huth & Wissel 
1993, for a good review see Parrish et al. 2002). 
Thanks to such theoretical studies one can then 
design experimental setups to test and to quan-
tify the underlying hypothesis.

There are two classes of models at hand 
(Levin 1997, Topaz 2006). The first one adopts 
an Eulerian approach where the movement 
dynamics are described by differential equations 
that represent a mean field approximation of the 
individual behavioural decisions as a function of 
their available information, which is in particular 
the position and the heading of conspecifics in 
some zone of perception. While there are some 
analytical tools to study the dynamics of such 
models (Grünbaum 1994, 1998, Niwa 1996, 
1998, Toner & Tu 1998, Tu 2000, Adioui et al. 
2003), there exists usually no analytical solution; 
they have to be solved numerically (Mogilner & 
Edelstein-Keshet 1996, Levine & Rappel 2000, 
Mogilner et al. 2003). Furthermore, many bio-
logically relevant features cannot be incorpo-
rated into such models, for example the presence 
of a blind perception zone behind each fish. This 
is where the second class of models comes in. 
They adopt a Lagrangian approach and model 
each individual as an independent unit with 
its own behaviour and interactions with other 
units or the environment (Vicsek et al. 1995, 
Grégoire et al. 2003). These individual based 
models (IBM) are analytically even less tracta-
ble and their analysis relies on fast and efficient 
numerical simulation, but they leave much more 
room to include biologically important features 

(Aoki 1982, Romey 1996, Inada & Kawachi 
2002, Viscido et al. 2005). Recent computer 
power has increased these models’ popularity 
and efforts are underway to unify their usage 
and description (Grimm & Railsback 2005). The 
present study will rely on such an IBM in order 
to deepen our understanding of what particular 
behavioural traits drive the collective properties 
of a fish shoal.

Most modelling studies of fish schooling 
describe the collective state with some global 
measure, e.g. group polarization or angular 
momentum, density (characterized by the mean 
nearest neighbour distance) or fragmentation 
(Viscido et al. 2005). These measures are well 
defined at the stationary state, which is the state 
where the collective dynamics converge from 
a given initial condition. They characterise this 
stationary state for the particular model hypoth-
eses (e.g. the size of the perception radius) and 
permit to test the model’s sensitivity with respect 
to them. However, the computing power neces-
sary to run these simulations often limits the 
extent of a sensitivity analysis. Furthermore, 
there is a multitude of different IBM’s teeming in 
the literature (Parrish et al. 2002), it is therefore 
difficult to identify the crucial factors at the base 
of some particular collective phenomenon. We 
therefore use in this study the most widespread 
model where fish interactions are limited to a 
short-range repulsion, a middle-range alignment 
and a far-range attraction (Couzin et al. 2002), 
and the aim is to gain further insight into this 
model’s dynamic behaviour by doing a com-
bined sensitivity analysis on both model param-
eters and initial conditions.

The first behavioural priority in this model 
is the avoidance of collisions: when a neighbour 
comes within a zone of repulsion the individual 
turns away at maximal speed. For neighbours 
outside this zone individuals tend to align their 
speed vector if these neighbours are still within 
a zone of orientation, or to approach them if 
they are farther away but still within the percep-
tion radius (zone of attraction). This is prob-
ably a minimal model that ensures both staying 
together and moving ahead. This model (or close 
variants of it) was the subject of most theoreti-
cal studies within the last twenty years (Parrish 
et al. 2002). The principal stationary dynamics 
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(Fig. 1) are swarming (high density but uncor-
related speed vectors), milling (turning around 
in donut form) or schooling (moving collectively 
straight ahead at maximal speed). Couzin et al. 
(2005) showed that even this minimal model 
enables the group to make elaborated self-organ-
ised collective choices.

The sensitivity of the collective phenomena 
to the initial conditions is rarely addressed in 
the aforementioned studies. However, in order 
to discover all possible dynamics or dynamic 
changes one has to explore various initial states. 
Studying the system evolution from one fixed 
initial condition only gives a partial view of the 
model capabilities. For instance, Couzin et al. 
(2002) and Viscido et al. (2005) computed the 
collective behaviour landscape starting from an 
initial condition close to swarming (random ori-
entation and position). Hence, they answered the 
question of which sizes of the zones of attraction 
and alignment let a schooling behaviour emerge 
from random alignment at a given density. This 
landscape may be very different with other ini-
tial conditions (e.g. with schooling individuals 
to explore which sizes let a swarming group 
emerge from a schooling one or whether school-
ing is a stationary state).

Varying initial conditions is particularly 
important when multiple stationary states exist 
for the same rules and parameter values. In such a 
case, the final stable pattern will strongly depend 
on the initial conditions (e.g. the density and 
polarization at some earlier time). Taking again 
the example of Couzin et al. (2002), they showed 
that two opposite collective patterns (swarming 
vs. schooling) can emerge with the same rules, 
depending on the collective state of the group 
about 200 seconds earlier. They also showed that 
hysteresis can arise when the zone of orientation 
is changed smoothly step by step every T seconds 
(with T of the same order as the relaxation time), 
which is a formal illustration that the final pattern 
depends on initial conditions.

In this paper we will explore the model’s com-
plete system dynamics, focusing on the two most 
relevant macroscopic characteristics: alignment 
(or polarization) and density. The only restric-
tion on initial conditions will be to avoid that the 
group splits up (which systematically happens 
when the density is too low). We will test in par-

ticular the sensitivity of polarization with respect 
to several model parameters: the size of the zone 
of orientation, curvature and speed of individual 
trajectories, the size of a blind rear zone, weight-
ing the influence of neighbours by their distance, 
and the level of noise in the system.

Methods

The model

We used in all simulations N = 100 individuals 
that move in a 3-dimensional continuous (off-
lattice) unbounded space. Time was discretized 
in steps of length τ = 0.1 s. Each individual i is 
characterized at time t by its 3-coordinates posi-
tion vector Pi(t) and its 3-dimensional unit speed 
vector Vi(t) (see Fig. 2). The evolution of the 
group is given by

 Pi(t + τ) = Pi(t) + vτ Vi(t),

where v is the (constant) speed expressed in 
body lengths per second (BL s–1). Individual 
behavioural decisions only affect the vector Vi(t) 
and define its value Vi(t + τ).

We assume that the body of each individual 
is perfectly aligned with its speed vector, Vi(t) 
therefore defines a natural subjective coordinate 
system for individual i, defining in particular its 
front and rear directions. All the fish within a 
connected group (see precise definition below) 
are considered to be neighbours of each other. 
We further assume that an individual i can assess 
the position and speed heading of the neighbours 

swarm mill school

Fig. 1. The three types of collective behaviour observed 
in this study (simulation snapshots): swarming behav-
iour without any correlation between fish orientation, 
milling behaviour where fish tend to be inversely aligned 
with their farthest neighbour, and schooling behaviour 
where all fish are swimming in the same direction and 
the group is moving at maximal speed.
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that are within a perception sphere with the 
exception of a blind cone in its rear. The visual 
field is therefore characterised by an angle of ±α 
degrees from the front direction to the rear.

We took as a reference model the behavioural 
rules defined by Couzin et al. (2002). Adopting 
the same model with a complementary approach 
allowed us to deepen our understanding of the 
internal logic of this collective behaviour. The 
core characteristic of this model is that the 
behavioural response of individual i to its neigh-
bours is mediated through a desired direction 
Di(t) computed from the perceived neighbours. 
The perception sphere within the visual field 
(i.e. without the blind cone) is decomposed into 
three non-overlapping zones of increasing range: 
zone of repulsion, zone of orientation and zone 
of attraction (Fig. 2a) with outer radii of ror, roo 
and roa respectively. The desired direction Di(t) 
is now computed from the number of neighbours 
(respectively nr, no, na) in each zone as follows: 
If there is at least one neighbour in the repulsion 
zone (nr > 0), repulsion prevails and

 

where rij(t) denotes the vector from the posi-
tion of the focal individual i to the position of 
individual j (Fig. 2a). This repulsion mechanism 
at the body length scale ensures that two fish 
bodies do not merge. If there is no neighbour in 
the repulsion zone (nr = 0) but some neighbours 

are present in the perception volume (no > 0 or na 
> 0), then

  

where the Vj(t) denote the unit speed vectors of 
neighbours j in the orientation zone which add 
up into an orientation matching component, and 
the rij(t) add up into an attraction component. 
We introduced a factor η in order to weight both 
components differentially (in the original model 
η = 1). In all other cases Di(t) is simply ignored 
and Vi(t) remains unaffected.

In the original model (Couzin et al. 2002) 
this deterministic value of Di(t) was blurred by a 
Gaussian noise added to each of its components 
in order to mimic the lack of precision in the per-
ception process. Noise can significantly alter the 
collective pattern (e.g. the onset of the schooling 
structure can depend on the level of individual 
fluctuations, Niwa 1996) and will therefore also 
be included in the present work. The specific 
implementation will be detailed below.

Once Di(t) has been computed for all individ-
uals at time t, each individual i rotates its speed 
vector Vi(t) towards Di(t) with a constant turning 
rate θ (rad s–1). This limit prevents the instanta-
neous adjustment of Vi(t) to Di(t) (Mogilner et 
al. 1996), except when Di(t) is already very close 
to Vi(t). Note that this movement rule enforces a 
constant linear speed in contrast to mechanistic 
models based on forces (Viscido et al. 2005).

α

rij

Vi (t)

ror
roo

roa
zor

zoo
zoa

df

ds

Vi (t)

Vi (t + dt)

Pi (t)

Pi (t + dt)

a b

Fig. 2. — a: The behavioural model of the focal individual (centre) with respect to neighbours (characterized by their 
relative distance vector r): avoidance in the zone of repulsion zor, alignment in zone zoo and attraction in zone zoa. 
α denotes the perception angle. — b: Characterization of individual displacement by the position vector P(t ) and the 
orientation vector V(t ). ds and dφ represent curvilinear displacement and turning angle (respectively) during time dt.
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The actual turning rate θ can be further 
decomposed into linear and angular speed,

 

where dφ and ds are respectively the turning 
angle of Vi(t) and the curvilinear displacement 
of Pi(t) during dt (Fig. 2b),  is a curvature, and 
v is the linear speed. The curvature  measures 
the angle turned per distance unit (rad BL–1) and 
denotes the ability of the fish to make sharp turns 
(e.g. the number of body lengths it has to swim 
to make a full U-turn is given by ds = π/).

Ror and roa were set to 1 and to 20 BL (body 
lengths) respectively throughout this study. In 
order to assess the role of alignment we varied 
roo from ror (i.e. no alignment, only repulsion/
attraction) to roa (only repulsion/alignment, no 
attraction), with a step size of 0.5 for roo  (1, 
5) and a step size of 1 for roo > 5 (giving overall 
24 values).

Noise

Stochastic effects are likely to weaken the accu-
racy of the perception of distances and headings 
of neighbours. However, if noise is only applied 
to Di(t), a fish undergoing no influence from its 
neighbours (when it is either isolated or when all 
its neighbours are in its blind rear cone) would 
keep its speed vector constant, resulting in an 
unrealistically perfect straight path. Noise was 
therefore applied to Vi(t) after its correction with 
respect to Di(t). In this way noise represents 
the overall effect of perception errors as well 
as motor decision errors. In the absence of any 
interactions with neighbours the group would 
simply undergo a spatial diffusion.

In order to keep the linear speed v constant, 
noise was only applied to the speed vector. It 
is therefore an angular noise, resulting in an 
angular diffusion (Perrin 1928, Brillinger 1997, 
Caillol 2004). In order to keep the implementa-
tion independent of the time step τ, angular noise 
was determined by a rotational diffusion coef-
ficient Dr (rad2 s–1), as in spatial diffusion (m2 s–1, 
Lombardo et al. 2006). The angular stochastic 
deviation dγ during the time step τ was drawn 
randomly from a normal distribution N(0,σr) 

with a variance proportional to the time step τ, 
σr

2 = 2Drτ. Vi(t) was then rotated by dγ around a 
uniformly distributed random vector orthogonal 
to Vi(t). Note that this specification of angular 
noise allows to ensure that noise stays within 
the turning capacity imposed by the maximal 
curvature : for 95% of noise angle deviation to 
remain within the deviation permitted by maxi-
mal curvature, we must simply set

 .

with the reference values  = 0.23 rad BL–1, ν = 
3 BL s–1 and τ = 0.1 s, we get Dr ≤ 20 deg2 s–1 or 
0.006 rad2 s–1.

Characterizing collective dynamics

Group polarization

At the collective level we characterized the 
dynamics in terms of polarization, computed as in 
Vicsek et al. (1995) and Couzin et al. (2002) by

 

(note that |Vi(t)| = 1 for each i). OG(t) close to 
1 indicates that the individual speed vectors 
are close to each other (schooling) and permits 
the group to travel long distances while staying 
together. On the other hand, an OG(t) close to 0 
lets the group stay in the same place (swarming 
or milling).

The group dynamics converge within 30 s to 
their stationary state; we therefore run simula-
tions for 60 s and computed the mean OG over 
the last 20 seconds. Control simulations over 8 
min gave exactly the same polarizations. Results 
were also unaffected when setting τ to 0.01 s. We 
finally also verified that 60 s were enough time 
to move away from the initial conditions and to 
detect the group’s dissolution in the absence of 
interactions.

Group connectedness

We focused on groups of fish that remain a 
single unit, i.e. we discarded the cases when 
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the group underwent a fission event. The group 
was assumed to remain a unique unit if each 
individual in the group was in contact with all 
other ones, either directly or indirectly. Two indi-
viduals were considered in direct contact if their 
inter-distance is lower than the maximal percep-
tion radius zoa. Two individuals were considered 
in indirect contact if a chain of direct contacts 
through any number of neighbours could con-
nect them. We finally assessed group connected-
ness by the algorithm for equivalence classes 
given in Press et al. (1992: p. 345).

Dynamics from an individual’s perspective

To explore the corresponding dynamics from 
the individual’s perspective we computed an 
individual density measure <λ> as the mean dis-
tance to the farthest neighbour and an individual 
polarization measure

 ,

where λ(i) denotes the farthest neighbour of indi-
vidual i, and the dot denotes the dot product. 
Since the speed vectors are scaled to unit, this 
dot product is the cosine of the angle between 
the headings of individuals i and λ(i). In the con-
text of connected groups the frequently measured 
mean nearest neighbour distance is a simple con-
sequence of the short range repulsion distance. On 
the other hand, the density measure <λ> allows 
to explore whether the dynamics of a connected 
group happen at a larger scale than the individual 
interaction range, with information propagating 
through the group. Namely, we can distinguish 
the case when all the fish are within a sphere of 
diameter roa (everybody influences everybody, 
(<λ> < 1) from the case where individual fish only 
perceive part of the (connected) group (<λ> ≥ 1).

Systematic exploration of the initial 
conditions

Initial density

The N individuals were initially spread uni-
formly in a sphere of radius

 .

The initial sphere volume is therefore given 
by

 ,

that is each individual was allocated on aver-
age a small sphere of radius f roa. The factor f 
is inversely proportional to the cube root of the 
initial density.

Given a cut-off distance for contact (in the 
present case, the maximal perception range roa), 
the connectedness of the group depends on its 
density and on the raw number of individuals. 
For N = 100 individuals we computed the prob-
ability for the group to remain connected: it falls 
below 0.05 for f > 0.5 and exceeds 0.95 for f < 
0.38.

What are the values of f that should be 
explored? Note that a group has a vanishing 
probability to be initially connected if the indi-
viduals are given (on average) a small sphere 
that nearly covers their perception radius (f close 
to 1). We therefore stopped the exploration of 
density at a value where the group is initially 
almost surely not unique (fmax = 0.62). On the 
other end we started at the highest density at 
which all individuals are packed into their zone 
of repulsion ( fmin = ror/roa = 1/20 ). Prelimi-
nary studies further showed that the collective 
behaviour is most sensitive to the initial density 
for low values of f. We therefore included the 
effect of density by varying f as a power series. 
A power factor of 1.07 yielded a set of 38 initial 
density values from fmin to fmax.

Initial polarization

The initial orientations of the unit speed vectors 
were determined by a parameter ψ ranging in [–
1, 1]. For each individual i, Vix was drawn from 
a uniform distribution in [ψ, 1]. The other speed 
coordinates were computed as  
and , with u drawn from a uni-
form distribution in [0, 2π]. Initial speed vectors 
are thus fully aligned for ψ = 1, and fully random 
for ψ = –1. We adopted a linear series from –1 to 
+1 by steps of 0.1 (21 values).
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Overall, for each of the 24 values of roo, the 
histogram of polarization was computed over a 
total of 21 initial polarizations ¥ 38 initial den-
sities = 798 initial conditions, simulating one 
replication per initial condition. We verified that 
repeated replications yielded the same results. 
Together with the exploration of the behavioural 
factors a total of 170 000 simulations were run.

Results

The reference model and its dynamics

The systematic variation of initial conditions 
confirms that the radius of the orientation match-
ing area, roo, has an important influence on the 
stationary dynamics of our fish model (Fig. 3, 
compare with Couzin et al. 2002). One can iden-
tify two major qualitative behaviours in terms 
of the group alignment parameter OG: (1) for 
a small roo the group stays in the same place, 
with individuals swarming or milling around the 
centre of mass of the group, (2) for a large roo 
individuals align with each other and adopt a 
common direction, with a cruising speed close to 
the individual linear speed (schooling). The hys-
teresis effect described by Couzin et al. (2002) 
could be obtained by varying roo continuously 
from 5 to 10 BL and back (Fig. 3). Note that the 
transition between swarming and milling occurs 
continuously and these two collective states 
cannot be qualitatively distinguished. Milling is 
in fact simply a swarming behaviour which is 
constrained by the limited turning rate (curva-
ture) that controls the short-range matching of 
fish headings.

The role of the individual behaviour

The emergent global behaviour should be 
explained in terms of the individual behaviour. 
The important factor is each individual’s dis-
tance to its most distant neighbour (λ) within 
a connected group. We will therefore visualize 
the transitional group dynamics in terms of this 
distance and alignment with these distant neigh-
bours (Oλ), an indicator of the long-range align-
ment of the group (Fig. 4).

For a small ratio roo/roa (Fig. 4, upper panel, 
roo = 2 BL) the fish always end up swarm-
ing under the dominating influence of attraction. 
Starting from a small volume and any initial align-
ment (Oλ between 0 and 1) the group converges to 
a stationary volume where attraction becomes 
sufficient to balance the system's inertia (Fig. 4, 
upper panel, zone a). Similarly, starting from a 
somewhat larger volume (zone b), the group first 
transits in a centripetal pattern where all individu-
als move toward the group centre (Oλ close to –1) 
before converging to the same stationary volume. 
Finally, when the group starts with a volume 
exceeding a critical value, attraction is not suf-
ficient to prevent it from splitting into subgroups 
(zone c). The path to swarming therefore passes 
through a temporal accumulation of mutual attrac-
tions between neighbours that destroy any initial 
alignment until it stabilizes at a stationary volume 
where the mean farthest neighbour distance is just 
below the attraction radius roa. In other words, 
the swarming equilibrium volume is so small that 
each individual is directly attracted to all others 
in the group. This full connectedness between all 
individuals explains the dominance of the swarm-
ing state: any neighbour ends up at a distance 
below roa, with only few individuals within roo. 
Hence, motor reaction is dominated by attraction; 
all individuals continuously try to catch up with a 
direction pointing towards the group centre. Per-
fectly aligned headings (school behaviour, Oλ = 1) 
only represent an unstable stationary state.
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Fig. 3. The stationary dynamics of the reference model 
characterized by the empirical distribution of polariza-
tion OG. For each value of the outer radius of the zone 
of orientation, roo, this distribution was computed from 
798 systematically varied initial conditions (see text). 
OG close to 1 corresponds to schooling behaviour, OG 
below 0.5 to swarming or milling behaviour.
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For a ratio roo/roa close to 1 (Fig. 4, lower 
panel, roo = 19 BL) the fish always end up in 
a schooling state (Oλ = 1) or split up (zone h). 
Starting from a small initial volume (zone f), the 
group first expands and then adopts a common 
orientation. Starting from a somewhat larger 
volume (zone g) the fish immediately adopt 
this common orientation. However, it is worth 
noting that the distance to the farthest neigh-
bour can remain largely superior to roa, school-
ing behaviour is therefore a truly self-organized 
process based on the spatial propagation of local 
interactions between neighbours, contrary to the 
swarming behaviour described above.

Finally, for intermediate values of roo/roa 
(Fig. 4, middle panel, roo = 4), the system is in a 
bi-stable state where initial conditions in zones d 
and e can lead either to schooling or to swarming 
behaviour. We could not detect any pattern that 

permits to predict the stationary state from the 
initial conditions as characterized by the param-
eters Oλ and λ. Though, some tendencies exist. 
Starting from a small volume (zone d), high 
initial alignment biases the dynamics toward 
further alignment (schooling). However, starting 
from a larger volume (zone e), the opposite may 
occur and initially aligned states lead to swarm-
ing, whereas initially disorganised states lead to 
schooling. Note that even in the latter case the 
dynamics pass through the swarming or even 
milling area before reaching the schooling state. 
This might depend on the geometrical arrange-
ment of the individuals, in particular whether 
the global shape of the group remains spherical 
or tends to some shape boosting alignment. This 
point has not been investigated in the current 
study but merits further attention.

In summary, the ratio roo/roa crucially deter-
mines the stationary state(s) of the system. For 
small ratios the fish end up in the swarming state 
where each fish is within the attraction zone of 
each other, while for ratios close to 1 the final 
state is schooling where individuals only interact 
with few neighbours. In between the system is 
bi-stable where the stationary state cannot be 
predicted from the initial state.

Critical behavioural factors

Blind zone

A blind rear zone of specific size is an often used 
feature in fish modelling (Aoki 1982, Couzin et 
al. 2002). In the reference model it was set to 90° 
(α = ±135°, Fig. 2a), but the global dynamics 
are affected by the size of this zone (Fig. 5). An 
intermediate increase (reducing α from ±180° 
to ±120°) only increases the probability for a 
group to split up, while conserving the dynamic 
landscape qualitatively. But further reduction 
of α (down to 90°) leads to dramatic changes, 
swarming behaviour disappears completely and 
the probability to split up increases tenfold or 
more (Fig. 5).

The relative robustness of group behaviour 
with respect to small blind rear zones can be 
explained as follows: the collective dynam-
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Fig. 4. Characterization of the transient dynamics 
towards the stationary state for roa = 2, 4 and 19 BL 
(body lengths). Oλ represents the mean polarization 
with respect to the farthest neighbour and λ is the mean 
distance to the farthest neighbour. The arrows indicate 
the initial conditions and point towards the stationary 
state. For the sake of clarity only seven representative 
initial conditions (out of 798 tested ones) are shown.
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ics rely on the spread of information about 
positions and orientations of individuals. For a 
given individual this information flows through 
its perceived neighbours, which in turn collect 
this information from their neighbours, and so 
on. Hence the intensity of the information flow 
depends on the global density of perceptual 
links between the individuals. For a large α, 
this density varies little with a changing α (and 
is further smoothed by the turning movements) 
whereas it undergoes a non-linear drop if α is 
greatly reduced (e.g. down to the volume ahead 
for α = 90°). “Leader–Follower” behaviours can 
emerge depending on whether two fish are in an 
attracting or aligning distance from each other. 
In the first case the follower tends to remain 
within the blind rear zone of its leader, but track-
ing it efficiently and thus remaining together. In 
the second case alignment of both fish also leads 
to joint displacement with a constant inter-indi-
vidual distance.

However, increasing the blind zone further 
(Fig. 5, lower panel) increases the probability for 
a leader to completely loose contact with its rear 
neighbours and to swim straight ahead. If this 
happens for several local leaders the group will 
split up. In the present model this happens for α 
between ±120° and ±90° which is unrealistically 
low for real fish.

Curvature

The curvature parameter  determines the speed 
with which a fish can change its heading. This 
parameter turned out to be the most important 
factor in the present model (Fig. 6). In the refer-
ence model (Fig. 3)  was set to 0.43 rad BL–1, 
corresponding to a turning rate of 40° s–1 for a 
speed v = 3 BL s–1.

If  is too low (Fig. 6, upper and middle 
panels) fish are unable to adopt quickly the 
desired direction Di(t). They tend to disperse 
more rapidly than the attraction can cope with. 
As a consequence, the group splits up in most 
cases.

Conversely, if  is set to a high value (Fig. 
6, lower panel), individuals are highly reactive 
to their perception and reach very easily their 

desired heading. In this case the system reaches 
its stationary state (swarming, schooling) more 
rapidly and the range of ratios roo/roa where bi-
stability occurs becomes negligible.

Noise

In a realistic system the effect of angular noise 
cannot go beyond the curvature , we there-
fore limited our exploration to values Dr < 20. 
The resulting dynamic landscapes (not shown) 
were indistinguishable from the reference model 
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(Fig. 3). We can therefore conclude that the 
detected stationary states and their dependence 
on initial conditions are barely modified by noise 
in the present model.

Attraction weighting

Finally, increasing the weight of attraction η with 
respect to alignment when computing the desired 
direction Di(t) has two effects: it increases the 
range of roo/roa values for which bi-stability 
occurs and shifts this range to the right (Fig. 7). 
For a fixed value of the orientation zone (e.g. roo 
= 4), the modulation of the attraction weight can 
make the collective state switch from schooling 

(η < 1) to swarming (η > 1) through the bi-stabil-
ity (η = 1).

Factors with no effect

Alteration of the linear speed v (keeping curva-
ture  constant), and the further enlargement of 
roa were found to yield the same results as the 
reference case.

Discussion

The present analysis confirms the results in 
Couzin et al. (2002) that there are two major col-
lective behaviours, schooling with the fish group 
moving straight ahead at maximal speed and 
swarming or milling where the group remains at 
the same spot. The former happens when align-
ment to neighbours dominates over attraction 
to them, while the latter occurs when attraction 
dominates. If both behaviours have equal impor-
tance a bi-stable state can occur where the initial 
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conditions determine the final collective state. 
This bi-stable state signifies that the same behav-
ioural rules on the individual level can result in 
multiple collective states.

The bistability has been made apparent 
because relevant initial conditions (initial pack-
ing density and polarization) were systemati-
cally explored. The initial density was explored 
from highest densities down to a critical lowest 
density that still allows the group to remain con-
nected. It is worth noting that this critical lowest 
density arises from a geometrical constraint and 
depends on the group size: a larger group must 
be more packed to remain connected. However, 
sonar measures in open sea show that the pack-
ing densities of fish seem to be independent of 
the size of the shoal (Misund 1993, Misund et 
al. 2003 and references therein). Note however 
that the density is in general quite heterogeneous 
inside large schools and may depend on their 
shape (Mogilner et al. 2003). With our model, 
the final density of the school (as measured by 
the mean distance to the nearest neighbour to 
correct for group shape) proved indeed stable for 
larger group sizes (up to N = 5000), whether the 
final state belonged to swarming or schooling. In 
all cases, the final density is far below the criti-
cal density for connectedness, the geometrical 
constraint therefore does not play a role at steady 
state. This result also shows that for large groups 
the swarming shape can be stable even if the 
fish do not perceive all others at the equilibrium 
volume (λ > 1).

We already mentioned that the dynamics 
converge in all cases within the first 30 seconds. 
However, this convergence time depends on the 
linear speed (taken here as 3 BL s–1) and also on 
the initial packing which in turn depends on the 
perception radius. To compare with biological 
data these model parameters ought to be tuned 
accordingly.

Note that the milling observed with the 
present model is characterized by a full con-
nectedness of the group (everybody is within the 
attraction zone of each other). It is not necessar-
ily of the same nature as the milling observed on 
much larger scales (Parrish & Edelstein-Keshet 
1999). By the way, the question of the individual 
rules that might lead to a swarming like behav-
iour without splitting but where each individual 

only perceives a fraction of the whole group 
remains an open one. In our case, the mechanism 
leading to swarming could also be replaced by 
a tendency to move towards the highest local 
group density, detection of each individual with 
its moving direction is not mandatory. However, 
reviewing the literature this seems not to be 
sufficient to obtain schooling, the moving direc-
tion of neighbours must somehow be perceived 
(Vicsek et al. 1995, Grégoire et al. 2003).

Instead of using fixed distance neighbour-
hood areas (ror, roo, roa) many authors rather 
choose to fix the number of neighbours taken into 
account (Parrish et al. 2002, Viscido et al. 2005). 
Interestingly, the number fixed by Viscido et al. 
(2005) in order to obtain a minimum number of 
stragglers (defined as individuals that are more 
than 5 BL from their nearest neighbour, which 
serves as a measure of connectedness) corre-
sponds to the average number of neighbours per-
ceived by each individual in the schooling state 
with a dominance of alignment over attraction 
(6–12 neighbours, see Fig. 4 lower panel).

Critical behavioural parameters

Variation of the visual field α within a biologi-
cally relevant range only had a minor effect on 
the observed collective dynamics (Fig. 5). The 
presence of a (even rather large) blind rear zone 
seems to have no particular impact on school-
ing or swarming behaviour, frequent directional 
changes are sufficient for a fish to “scan” its rear 
and let it have an average impact on its move-
ment. In contrast, low values of the maximum 
turning rate  highly increase the risk of splitting 
up, and swarming behaviour becomes impos-
sible (Fig. 6). This parameter might be under a 
strong selection pressure. For example, tuna-like 
swimmers seem to be optimized for high-speed 
swimming in calm waters (Sfakiotakis 1999) but 
they are barely capable of rapid accelerations or 
turning manoeuvres. For collective behaviour to 
emerge in such species, a large zone of orienta-
tion should be favoured over the attraction range, 
a prediction that longs for an experimental vali-
dation. This also implies that comparative stud-
ies about schooling behaviour should be done 
only between species with similar maximal .
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Switching between different collective 
states

Many fish species are capable of switching 
between schooling and swarming/milling behav-
iour (Fréon and Misund 1999). Couzin et al. 
(2002) explained this by a modulation of the zone 
of orientation (roo) that, as we have seen (Fig. 3), 
can indeed trigger such a change. However, the 
proposed mechanism how roo is changed often 
relies on external factors that modify the percep-
tion range (for example day/night or water turbid-
ity). Our observation that differential weighting 
of attraction and orientation can also change the 
collective state suggests an alternative mecha-
nism. For fixed roo = 5, changing the weight of 
attraction with respect to alignment (η) from 0.1 
to 10 and back (Fig. 7) has the same hysteresis 
effect as described by Couzin et al. (2002) with 
changing roo. The weight η can be modulated by 
the animal's internal state, for example an anti-
predator behaviour might involve a large η that 
increases the weight of attraction (Hamilton 1971, 
Beechaam & Farnsworth 1999, Viscido & Wethey 
2002, James et al. 2004) and triggers swarming or 
milling behaviour, while η is small in the absence 
of predators, increasing the weight of alignment 
and leading to schooling behaviour.

This study only addressed the dynamics of 
schooling behaviour in the absence of envi-
ronmental heterogeneities or restricting borders. 
The coupling of these dynamics with environ-
mental effects (water streams, temperature gra-
dients, pollution, food abundance, population 
dynamics ...) is not a trivial task and would 
require further detailed and specific studies. For 
example, Koltes (1985) showed that the presence 
of copper can significantly alter the behavioural 
parameters such as the linear speed and the 
curvature. This alteration had a clear impact on 
the collective behaviour towards schooling. Our 
model suggests that the observed alteration of 
the individual curvature can by itself explain the 
shift in the collective behaviour, with or without 
alteration of the linear speed.

Alternatives to individual based models

The present (Lagrangian) model describes the 

change in individual behaviour (position and 
heading) as a combination of deterministic (influ-
ence of neighbours) and stochastic components 
that only depend on the current state of the system. 
It can therefore be interpreted in the framework of 
coupled Markov processes in continuous time 
with a master equation governing the (probabil-
istic) behavioural transitions. In some cases (for 
example spatial diffusion, see Patlak 1953 for the 
first application to animal behaviour) such an indi-
vidual model can be linked to analytically more 
tractable partial differential equations (PDE) that 
describe population behaviour at a macroscopic 
scale. However, some behavioural approxima-
tions and simplifications are necessary to obtain 
these analytical expressions. In the case of fish 
school models these simplifications are particu-
larly stringent, for example Vicsek et al. (1995) 
worked in a closed space (toroid) in order to skip 
the need for attraction, Niwa (1996) neglected 
curvature constraints, and blind rear zones never 
make it into a macroscopic model. The strength of 
numerical explorations of (stochastic) individual 
based models lies exactly in this absence of tech-
nical necessities to simplifications, all biologically 
relevant features with respect to the explored 
global behaviour can be incorporated. However, 
in order for these numerical simulations to be as 
exhaustive as the ones that can be performed with 
macroscopic equations one has to go beyond the 
interpretation of particular simulation runs and 
extract structural properties such as bi-stability or 
the conditions when individuals only perceive part 
of the group rather than the whole one. One of the 
ways to get there requires a systematic explora-
tion of the dynamics starting from any possible 
relevant initial condition.
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