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Computational models have been successfully applied to a wide variety of research 
areas including infectious disease epidemiology. Especially for questions that are 
difficult to examine in other ways, computational models have been used to extend 
the range of epidemiological issues that can be addressed, advance theoretical under-
standing of disease processes and help identify specific intervention strategies. We 
explore each of these contributions to epidemiology research through discussion and 
examples. We also describe in detail models for raccoon rabies and methicillin-resis-
tant Staphylococcus aureus, drawn from our own research, to further illustrate the role 
of computation in epidemiological modeling.

Introduction

Epidemiology is defined as the study of the dis-
tribution, determinants and control of diseases 
and has been a cornerstone of public health 
research since the 19th century (Szklo & Nieto 
2000). Mathematical models of infectious dis-
eases have played a significant part in that his-
tory beginning with Daniel Bernoulli’s model 
for smallpox in 1760 (Blower & Bernoulli 2004) 
and Ross’s for malaria in 1897 (Ross 1911). 
Mathematical models are especially valuable for 
evaluating the consequences of experiments and 
interventions that would be unethical or cost-pro-
hibitive to attempt under real world conditions. 

Bernoulli, Ross and modelers that followed their 
initial contributions were, however, limited by 
the mathematics and computational approaches 
that could be undertaken by hand. Consequently, 
they were constrained in the range and type of 
questions they could ask.

The modern development of increased com-
putational capacity, fortunately, has allowed us 
to consider models that would be impractical or 
impossible to analyze under the early constraint 
of analytic tractability. The emphasis in this 
paper is on the contributions made to infectious 
disease epidemiology through the incorporation 
of computational approaches to modeling the 
infectious disease process. The range of benefits 
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extends from the merely methodological, e.g. it 
is considerably more efficient to determine the 
eigenvalues and eigenvectors for large matrices 
computationally, to the incorporation of very 
minute details into the transmission dynamics 
across thousands of individuals exposed during 
an epidemic, e.g. through the construction 
of individually based simulations (Grimm & 
Railsback 2005).

To organize our discussion we have identi-
fied three broad categories where computational 
modeling has contributed to epidemiological sci-
ence: (1) extending the range of epidemiological 
issues that can be addressed through modeling, 
(2) advancing theoretical understanding of dis-
ease processes, and (3) helping to identify and 
evaluate specific intervention strategies. In each 
case, we use particular models as examples to 
demonstrate the role and importance of compu-
tation in epidemiology.

Including additional biological detail is 
an important way in which a computational 
approach can extend the range of models. The 
simplifying assumptions used to make a model 
analytically tractable are sometimes extreme or 
unreasonable (Anderson & May 1991). Typi-
cal examples include assuming that stochastic 
effects are small or that a population is spa-
tially well mixed. Simplifying assumptions can 
also introduce difficulties in the applicability of 
model results to particular diseases or popula-
tions. The introduction of model simplifications 
is largely a reflection of limits on the numbers of 
variable, equations, computations and data that 
humans can effectively handle. These limitations 
are, of course, exactly the problems that comput-
ers are designed to address. By admitting more 
variables and equations, restrictive assumptions 
can be relaxed, more biological detail can be 
included and a model can more closely reflect 
reality. For example, a computer model can 
explicitly trace interactions between individuals 
based on proximity rather than assuming a popu-
lation is spatially well mixed. Computer models 
also allow us to include additional components 
to an existing model, such as the effects of mul-
tiple interacting diseases (e.g. human immuno-
deficiency virus (HIV) and tuberculosis). Differ-
ences between basic and extended models have 
been used to demonstrate the relative importance 

of particular mechanisms such as age-structure 
(DeAngelis & Waterhouse 1987).

A computational approach can also extend 
the range of models to include the effects of 
specific intervention strategies to control infec-
tious disease. Since the prevention and control 
of disease is a central occupation of epidemi-
ologists we consider it as a separate topic in our 
discussion of computational modeling. The tools 
of medicine and public health, such as antimicro-
bials, vaccines, and quarantine measures, have 
been enormously successful in treating, prevent-
ing, and controlling infectious disease. However, 
the use of these tools can lead to unexpected and 
undesirable outcomes such as the evolution of 
pathogens resistant to antimicrobials (O’Brien 
2002). Computational models can include the 
effects of different control measures and allow 
us to evaluate alternative strategic uses of these 
health care measures (Anderson & May 1990, 
Ferguson et al. 2001b, Smith et al. 2005b). Com-
putational models allow us to evaluate in detail 
the way control measures and epidemiological 
processes interact to produce population out-
comes. Another important application of mod-
eling is as a tool to systematically address diffi-
culties inherent in observing the effects of health 
care measures. The most appropriate assessment 
of the effectiveness of a health care strategy is 
not always clear a priori. Computational models 
can be used to evaluate rapidly different meas-
ures of success and provide a relative assessment 
of which are most likely to be useful. In this way 
models provide a repeatable, mathematically 
rigorous and quantitatively precise evaluation 
of public health policies. For example, Ander-
son and May (Anderson & May 1991) used a 
computational model to evaluate the effects of 
observed patterns of age-dependent transmission 
on vaccination policy.

A model can be as simple and straight-
forward as a linear regression, or as complex 
as a spatially-explicit, individual-based simula-
tion (Grimm & Railsback 2005). Geographic 
Information Systems (GIS) models are used to 
combine numerous spatial data layers to model 
the potential spatial distribution of an infec-
tious disease (Clarke et al. 1996). Sophisticated 
approaches to reconstructing the phylogeny of 
infectious agents and their hosts have been cen-
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tral in understanding disease processes (Biek 
et al. 2007). Individual based models take into 
account individual variability and behaviors 
(DeAngelis & Mooij 2005, Grimm & Railsback 
2005).

In our examples, we have chosen a broad 
definition of what constitutes a computational 
model. We have included models that are consid-
ered mathematical, such as systems of differen-
tial equations, as well as models that can only be 
meaningfully classified as computational, such 
as individual-based models. It is difficult to draw 
a clean distinction between these categories. A 
model expressed as equations could be classi-
fied as computational if its results and conclu-
sions are based solely on computer output. In 
gathering this range of models we have focused 
on examples in which a computer is central to 
revealing the relationship between determinants 
of infectious disease and the resulting distribu-
tion.

Authors often refer to their models as math-
ematical, even when most or all of the model 
analysis is based on computational results. Labe-
ling such models as mathematical arises because 
their formulation follows directly from the long 
tradition of mathematical models that preceded 
modern personal computers. Examples include 
models based on systems of differential equa-
tions, finite difference equations or Leslie matrix 
models. However, many of the models that are 
derived from the mathematical tradition involve 
adding terms or equations that make it difficult 
or impossible to derive meaning from the model 
using traditional analytical techniques such as 
equilibrium analysis. In those cases, the dynam-
ics are revealed numerically and conclusions 
are based on the analysis of computer output. 
On this basis we have included mathematical 
models that highlight the role of computational 
modeling in epidemiology.

In contrast to the mathematical models, 
approaches like individual-based modeling only 
became viable following the advent of modern 
computers. These models allow for individual 
variation within the population and track the fate 
of each member. These models require the rapid 
storage and retrieval of vast amounts of data, and 
extensive calculations to update each individual 
from one time step to the next. Obtaining results 

from this class of model requires the speed, accu-
racy and memory provided by computers. This 
class of models is clearly computational, and 
there is rarely any ambiguity about their status as 
such. As with the mathematical models we have 
included, the results and conclusions from these 
models rest upon simulation output.

To illustrate the points outlined above, we 
discuss two specific computational models drawn 
from our own research. In the firts example, 
we describe an individual-based patient model 
within a small ward of a hospital. This model is 
used to evaluate how individual patient variation 
interacts with different hospital policies designed 
to manage nosocomial, i.e., hospital-acquired, 
infections. The second example describes the 
application of a spatial optimal control model to 
the vaccination of wildlife to limit the epidemic 
spread of an infectious disease, namely rabies. In 
each case, we highlight the advantages of taking 
a computational approach.

Contributions of computational 
models

Computational models extend the range 
of models that can be considered

The addition of population structure is an impor-
tant way in which a computational approach 
extends the range of models that can be con-
sidered. Adding population structure makes the 
model more closely reflect the biology, ecology 
or epidemiology of a particular system. A better 
correspondence between model and biology is 
important when variation within the population, 
such as differences in death rates between age 
groups, is an important mechanism controlling 
population dynamics. Additional structure and 
realism in a model can change our estimate of 
system dynamic and, in particular, how epi-
demiological dynamics will respond to human 
intervention to control disease spread as well 
as threats such as global warming and habitat 
destruction (Weiss & McMichael 2004, Patz et 
al. 2004).

The disease status of individuals is an essen-
tial form of population structure in epidemiolog-
ical modeling. Many epidemiology models start 
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by stratifying the population by disease status 
with the standard classification of susceptible (S), 
infected (I) and recovered (R). That is, the popu-
lation is thought of as being divided into three 
distinct groups. The susceptible group is gener-
ally defined to be those individuals that have 
never been infected but may become infected 
later. The infected group is those individuals that 
are infected and are capable of infecting others. 
Finally, the recovered group is composed of 
those individuals that have cleared the pathogen. 
Models that structure populations in this way 
are referred to as compartment models (Ander-
son & May 1991) and often receive specific 
designations that reflect specific structures. A 
model with susceptible, infected and recovered 
individuals is an SIR-model. In these models, the 
disease status delineates groups with substan-
tially different demographic parameters that are 
important determinants of disease spread. For 
example, members of these groups may have dif-
ferent fecundities, dispersal patterns, life expect-
ancies, risk of reinfection and may differ in the 
rate of mortality.

However, many diseases cannot be modeled 
by a simple SIR structure but rather require mul-
tiple infectious classes. The number of divisions 
used can reflect many factors, including different 
clinical manifestations, various levels of immu-
nity after recovery or whether an infection is 
treatable with antibiotics or is refractory. Kim et 
al. (2007) explicitly modeled multiple strains of 
human papillomavirus (HPV) to evaluate alter-
native screening strategies since only certain 
strains of HPV are cancer-causing. Stilianakis 
et al. (1998) developed a model for influenza 
with two susceptible classes (with and without 
chemoprophylaxis) and nine infectious classes 
that include treated and untreated individuals, 
symptomatic and asymptomatic individuals, and 
patients infected with either a wild type or a 
resistant virus. Stilianakis et al. (1998) used their 
model to show that, relative to treating sympto-
matic individuals, chemoprophylaxis was more 
successful at reducing the number of influenza 
infections, the duration of an epidemic and limit-
ing the development of drug resistance.

Additional forms of population structure, 
such as spatial, age or class structure can also 
be important features to incorporate into models. 

Ball and Lyne (2002) showed that dividing a 
population into individual households is valu-
able when determining optimal vaccination strat-
egies. Hyman and LaForce (2003) added the 
spatial structure of a 33-city network to an influ-
enza model to investigate the spread of epidem-
ics within and among each city. Boender et al. 
(2007) used a computational model that included 
the location of 5360 poultry farms to analyze 
the 2003 outbreak of avian influenza in the 
Netherlands. Using this model, they showed that 
the spatial distribution of infected farms could 
be accounted for by variation in farm density 
(Boender et al. 2007).

Seasonality is among the most important 
environmental processes driving disease dynam-
ics (Altizer et al. 2006). Periodic cycles in case 
numbers have been observed for many infec-
tious diseases, including influenza (Cox & 
Fukuda 1998) and rotavirus infections (Cook 
et al. 1990). Seasonal variation in the number 
of reported cases has been attributed to several 
causes, including seasonal temperature changes, 
changes in rainfall and seasonal cycles in the 
rate of contact between hosts (Dowell 2001). 
Computational modeling allows for the inclusion 
of seasonality in the environment and evaluation 
of alternative hypothesized links between sea-
sonality and cycles in host/pathogen dynamics. 
Computational modeling has been used to make 
a strong case that variation in annual cycles 
of measles cases among school-aged children 
is driven by seasonal aggregation of students 
during the school year (Grenfell 1992, Bolker 
1993, Earn et al. 2000). Recently, Ferrari et al. 
(2008) used a model to show that cycles in the 
number of measles cases in Africa can be pro-
duced by season variation in rainfall.

Demographic stochasticity can be an impor-
tant element determining population dynamics, 
especially when numbers are relatively small. 
This is important from an epidemiological per-
spective when the prevalence of a disease is low 
and the susceptible population is small. Whether 
or not a disease persists under these conditions 
depends, in part, on the occurrence of rare trans-
mission events. A number of models have been 
developed to investigate the role of demographic 
and environmental stochasticity on disease 
dynamics; however, even relatively simple sto-
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chastic models are difficult to analyze analytically 
and a computational approach is often required 
(Anderson & May 1991, Renshaw 1991).

The type of additional structure needed for a 
given model will depend on both the specific dis-
ease and the questions being asked. For example, 
a model of influenza can divide a population into 
distinct age classes for school-aged children and 
adults to include age-specific patterns of interac-
tion that may account for age specific patterns 
in the likelihood of infection. Similarly, we can 
add spatial heterogeneity that reflects real world 
patterns. Another example would be to allow 
specific parameter values to vary according to a 
seasonally varying function (Bacaer 2007). With 
the advances in satellite imagery and other GIS 
datasets, parameter values can be tied directly 
to measured data points. For example, mosquito 
development time can be defined as a function of 
average daily temperature for each one-degree 
grid cell across a defined landscape. In addition 
to population structure, a model can incorporate 
interactions with predators or prey. It may also 
be important to include the effects of alternative 
host species for a pathogen.

Adding population structure can result in 
models that require a computational approach. 
For models based on systems of differential 
equations, the addition of various types of popu-
lation structure is handled by adding additional 
equations. For example, age structure is com-
monly added by representing each age class with 
a separate equation. Adding equations is also an 
approach used to produce a model with realistic 
waiting time distributions for the infectious peri-
ods (Lloyd 2001). However, as the number of 
equations increases, our ability to derive under-
standing from a model analytically becomes pro-
gressively more difficult. In these cases compu-
tation becomes a rapid and efficacious approach 
to model analysis.

Computational modeling is also useful in 
making the connection between results obtained 
analytically and scenarios that more closely 
reflect real world conditions. Results derived by 
Meyers et al. (2003) showed that the fraction of 
hospital wards in which patients contract pneu-
monia (Mycoplasma pneumoniae) rises rapidly 
as the average number of wards visited by car-
egivers increases from 1 to 2. This result was 

based on an assumption that the number of car-
egivers per ward and the number of wards was 
very large. They used a computational model to 
show that the result remained true for more real-
istic numbers of wards and caregivers.

Advances in the theory of disease 
processes

Extending models through computation is a pow-
erful tool for investigating the effects of biologi-
cal mechanisms on the distribution of infection. 
For a given epidemiological phenomenon, there 
may be several explanations. For example, sus-
tained cycles in the prevalence of disease have 
been attributed to seasonality in host behavior 
(Hosseini et al. 2004), changes in rainfall or 
temperature (Greenwood 1987, Kim et al. 1996) 
or host immune response (Dowell 2001). Testing 
of specific hypotheses derived from these expla-
nations can be performed quickly and inexpen-
sively. In this section, we discuss several cases 
in epidemiology in which the use of computa-
tional models to explore various determinants of 
infectious disease has advanced epidemiological 
theory.

A difficulty with many early epidemiological 
models is that they produced unreasonably low 
estimates for disease prevalence during inter-
epidemic phases (Bacon 1985, Grenfell et al. 
1995). This problem can be expressed in terms 
of the critical community size (CSS) required 
to maintain an endemic prevalence of an infec-
tious disease (Bartlett 1957). Initial model-based 
projections of the CCS for measles were signifi-
cantly larger than estimates based on historical 
records (Bartlett 1957, Olsen & Schaffer 1990). 
A series of models were developed to iden-
tify mechanisms that result in more reasonable 
estimates for the CSS. The effects of spatial 
structure (Grenfell 1992), seasonality (Schaffer 
& Kot 1985), age structure (Bolker & Grenfell 
1993), and latency period distribution (Keeling 
& Grenfell 1997) on estimates of the CCS were 
evaluated. Age structure and the distribution of 
latency and infectious periods were both shown 
to produce CCS estimates that are more consist-
ent with the empirical estimate (Bolker & Gren-
fell 1993, Keeling & Grenfell 1997).
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The impact of spatial heterogeneity on disease 
dynamics has been shown in a number of cases 
to play a critical role. One form of this problem 
is the extent to which natural and anthropogenic 
sources of spatial variation contribute to the 
spread of disease. Smith et al. (2002) employed 
an elegant computational model to show that 
rivers, which impede the movement of raccoons, 
were an important factor in accounting for the 
spread of raccoon rabies. The same model has 
also been used to demonstrate the importance of 
long distance dispersal of infected raccoons on 
the spread of rabies (Smith et al. 2005a). This 
model was also applied in New York and Ohio, 
including spatial heterogeneity specific to each 
state, to project the spread of rabies (Russell et 
al. 2003, Russell et al. 2005).

The ability to handle the effects of seasonal-
ity and stochasticity efficiently with a computa-
tional model has extended the investigation of 
mechanisms that produce sustained oscillations 
in the prevalence of infectious disease. Periodic 
cycles in the prevalence of infectious disease are 
a widely observed phenomenon (Altizer et al. 
2006). Some infectious diseases, such as rotavi-
rus infection in humans, exhibit regular annual 
cycles in prevalence (Cook et al. 1990, Reichert 
et al. 2001, Rodo et al. 2002). Others, most nota-
bly measles, exhibit yearly and multiyear cycles 
as well as aperiodicity in the prevalence of dis-
ease (Earn et al. 2000). The effects of seasonal 
changes in patterns of host behavior have been 
extensively explored as mechanisms driving dis-
ease cycles. Computational models have been 
used to show that seasonal patterns of migration 
and aggregation in house finches can account for 
cycles in the prevalence of avian conjunctivitis 
(Hosseini et al. 2004). A deterministic SEIR-
type model that includes seasonal changes in the 
contact rate in school-aged children can produce 
periodic and irregular patterns of disease out-
break that are consistent with measles (Olsen & 
Schaffer 1990, Schaffer & Kot 1985). Further 
modeling of measles has shown that environ-
mental and demographic stochasticity and non-
linearity may both be important to account for 
the variety of periodic and aperiodic outbreaks of 
measles (Ellner et al. 1998). Returning to a non-
stochastic model for measles, Earn et al. (2000) 
showed that long-term exogenous changes in the 

average contact rate can account for the transi-
tions between different dynamic regimes.

Another complexity of diseases that leads 
to computational models is the interaction of 
multiple diseases or multiple strains of a single 
disease. For example, dengue fever has four 
competing strains leading to very complex 
dynamics. Ferguson et al. (1999) used an age-
structured, multiple-strain population model to 
show that antibody-dependent enhancement of 
transmission influences the pattern of outbreaks. 
Additionally, co-infection with two or more dif-
ferent diseases can change the dynamics from 
what would be anticipated for a single disease 
in isolation. It has also been suggested that 
concurrent sexually transmitted infections (STI) 
can enhance the transmissibility of HIV. Thus, a 
mathematical model that includes both HIV and 
another STI can show the impact of controlling 
the spread of HIV by controlling a completely 
different infection (Renton et al. 1998).

Epidemiology models are often focused at 
the host population level, but many diseases 
have important dynamics at the intra-host level 
as the infection interacts with various tissues. 
For example, mathematical models have been 
developed and applied to give insights into the 
ability of Heliocobacter pylori to persist within 
the human stomach and cause chronic gastritis 
(Kirschner & Blaser 1995, Blaser & Kirschner 
1999, Falk et al. 2000, Joseph et al. 2003, Joseph 
& Kirschner 2004). Similarly, the mechanisms 
by which trypanosomes (Kosinski 1980), HIV 
(Nowak et al. 1991), and malaria (Hoshen et al. 
2000) affect the host have been studied using 
mathematical models.

Each of the advances discussed were made 
possible because computational models allowed 
the effects of additional biological, population 
and environmental mechanisms to be analyzed 
simultaneously with great facility.

Evaluation of specific intervention 
strategies

Computational models can lead to changes in 
how we treat disease, inform public health policy 
and identify mechanistic linkage between dis-
ease dynamics and treatment/control strategies. 
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Treatment and public health policy are truly 
applied problems. In some cases, formation of a 
meaningful policy requires that we add structure, 
such as space and spatial heterogeneity, to obtain 
an estimate of how a population will respond to a 
specific treatment plan. The treatment plan itself 
may be structured in time and space, requiring a 
model that can accommodate and make full use 
of a structured policy.

The 2001 outbreak of Foot-and-Mouth dis-
ease (FMD) in Great Britain was a significant 
financial blow to the country’s livestock industry. 
The outbreak was managed by culling animals 
on infected premises and farms with dangerous 
contacts, and by restricting movement between 
farms. Computational modeling was used to 
evaluate the effectiveness of the implemented 
policies, as well as to evaluate the relative merits 
of alternative strategies. As the outbreak was 
unfolding, Ferguson et al. (2001b) developed a 
model to show that extensive culling at all farms 
within a geographic ring surrounding infected 
farms would be more effective than the existing 
strategy. Their model results also suggest that 
culling would be more effective at slowing the 
spread of FMD than vaccination applied to farms 
within a geographic ring surrounding infected 
farms. The results from this model influenced 
the subsequent management of the 2001 FMD 
outbreak (Ferguson et al. 2001a).

Computational models are useful for testing 
the effects of hypothetical intervention meas-
ures on the predicted prevalence or incidence 
of disease. For example, Blower et al. (2000) 
showed that while antiretroviral therapy will 
reduce the number of HIV cases and HIV-related 
deaths, it could also cause a change in behavior 
related to the perception that the disease is treat-
able. Blower et al. (2000) also showed that the 
shift in the perception could not only eliminate 
the net benefit of treatment but could eventu-
ally result in an increase in the number of new 
HIV cases. Vaccination strategies have also been 
evaluated using computational models. Hethcote 
et al. (2004) used computer simulations to com-
pare pertussis vaccination strategies and found 
that changing the age for the booster shot from 
18 months to adolescence would significantly 
reduce overall pertussis incidence.

An emerging area in computational epide-

miology is the application of optimal control 
theory to spatially explicit models of disease 
spread. There are often many possible interven-
tion measures for controlling the spread of an 
infectious disease. Such intervention measures 
might include vaccination, treatment, quarantine 
or behavior modification. When evaluating inter-
vention strategies, other factors that constrain 
intervention measures must also be considered, 
such as the economic cost of the interventions. 
Nearly every public health effort has limited 
resources, and a central question is how to allo-
cate limited resources to optimize the control 
of an infectious disease. That is, how can finite 
resources be allocated among different inter-
vention measures, and how does the allocation 
change over time to produce the “best” overall 
control of an infectious disease? Spatial opti-
mal control extends the optimization problem to 
include the effects of space and spatial heteroge-
neity. Asano et al. (2008) applied this technique 
to a model of raccoon rabies to evaluate the 
effects of host ecology on disease control. Rac-
coons are vaccinated against rabies through the 
periodic distribution of vaccine-laden baits. The 
number of baits available to raccoons changes 
over time as raccoons and non-target species, 
such as skunks, eat the baits. Ding et al. (2007) 
has also developed a model for the optimal spa-
tial control of raccoon rabies to examine how 
vaccine dynamics change treatment policy. In 
this paper we discuss a new computational model 
that builds upon the work of Asano et al. (2008) 
and Ding et al. (2007) to evaluate the effects of 
landscape features, such a rivers, on the spatial 
distribution of vaccination.

Novel examples

An example of simulation investigations: 
Evaluating alternative strategies for 
managing MRSA in a hospital

As our first example, a simulation model was 
developed to test the projected benefits of dif-
ferent active surveillance (AS) strategies for 
methicillin-resistant Staphylococcus aureus 
(MRSA) control in intensive care units (ICU) 
(Perencevich et al. 2005). Staphylococcus aureus 
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is a bacterium that frequently colonizes the skin 
and nasal passages of humans. As the name 
implies, MRSA is a staph infection that is resist-
ant to methicillin and related antibiotics. MRSA 
is becoming more prevalent, accounting for over 
50% of all S. aureus infections in hospitalized 
patients. Individuals who are colonized with 
MRSA are typically asymptomatic but can trans-
mit the disease through direct contact or to other 
patients on a ward via health care workers. Infec-
tions with MRSA have increased morbidity and 
mortality resulting in longer hospital stays and 
increased medical costs (Engemann et al. 2003). 
Isolation of known MRSA-colonized patients is 
a common practice aimed at reducing the prob-
ability of spread by simply reducing the number 
of potential contacts between colonized and 
uncolonized patients (Muto et al. 2003). Isola-
tion also incurs costs, and so the question at hand 
is how to balance the increase costs of interven-
tion against the potential decrease in costs from 
prevention of additional MRSA infections.

To begin to explore this question, we devel-
oped an individual based model for the spread 
of MRSA in a 10-bed ICU. The model is similar 
to those of Austin et al. (1999), Perencevich et 
al. (2004), and Raboud et al. (2005). All base-
line parameters for this model are drawn from 
three-year averages in the University of Mary-
land Medical Center (Baltimore, MD, USA) 
medical ICU (Furuno et al. 2007). The agents in 
the model are the patients in the ICU and each 
patient has a unique id number, length of time on 
the ward, a true MRSA status upon admittance 
to the ward, a true current MRSA status, MRSA 
test status (not tested, pending results, false posi-
tive, true positive, false negative, true negative) 
and an isolation status. The ward has beds for 
up to 10 patients at a time and is assumed to be 
at capacity 98% of the time. The average length 
of stay, the prevalence of MRSA for incom-
ing patients and the percent test compliance, if 
administered, are also known for the ward. The 
model runs on a 4-hour time step and is evalu-
ated for a full year. For each time step, the prob-
ability that an uncolonized patient will become 
colonized, termed the “infectious pressure”, of 
the ward is calculated based upon the patients 
that are present at the beginning of the time step. 
The infectious pressure depends on the number 

of colonized patients and the isolation status of 
those patients. If there are empty beds, there is a 
check to see if they are filled with new patients. 
Each new patient is assigned a true MRSA status 
based on the empirically calculated incoming 
MRSA prevalence. Depending upon the sur-
veillance policy on the ward, a patient may be 
placed immediately into isolation upon admis-
sion. Again, depending upon the surveillance 
policy on the ward, a patient may be subjected 
to an MRSA test. Each patient is assigned a time 
on the ward chosen randomly from a distribution 
representing the observed length of stay data. For 
each patient with a test status of “pending”, we 
check to see if the required time has passed for 
the test results and, if so, assign the test results 
according to the specificity and sensitivity of the 
test being implemented. Next, we check for any 
colonization events based on the infectious pres-
sure calculated at the beginning of the time step. 
Finally, we check for discharge of patients based 
upon length of stay. This process is repeated for 
each time step.

This simulation model provides the struc-
ture needed to test a variety of test return times 
as well as basic surveillance scenarios. We 
evaluated many different surveillance scenarios 
including the following:

1. Active surveillance Type 1 (AS1): “Innocent 
until proven guilty.” Patients are tested upon 
admission into the ward, but they are not 
moved to isolation until they have a positive 
test result.

2. Active surveillance Type 2 (AS2): “Guilty 
until proven innocent.” All patients are iso-
lated upon admission, and they are released 
only upon the return of a negative test result.

There are many ways to look at the results 
of our findings. For example, similar numbers 
of acquisitions of MRSA are prevented using 
any one of the proposed surveillance strategies. 
To test the robustness of these results, we com-
pleted a one-way sensitivity analysis for length 
of stay, sensitivity of the test results, reduction 
in transmission from isolation, prevalence of 
MRSA on admission, percentage of incoming 
patients tested, probability of colonization, and 
test return time. The two strategies had radically 
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different results (Fig. 1). While the AS2 showed 
dramatically improved reductions in the number 
of new colonization events, this strategy is very 
cost prohibitive and thus would not be realis-
tic for implementation in most hospitals in the 
USA.

Many other questions can be asked, tested 
and answered using this simulation model. For 
example, we explored the cost-effectiveness of 
the various surveillance strategies, calculating 
the cost per colonization event prevented. Some 
of the next steps involve expanding this simula-
tion to include multiple wards within the same 
hospital and having patients transfer between 
wards. Additionally, other tests could be evalu-
ated for cost effectiveness including improve-
ments to sensitivity and specificity as well as 
return time.

In this investigation a computational approach 
takes a central role. The experiments that were 
performed using different strategies for isolating 
patients and different MRSA tests might have 
been unethical to carry out with real patients. In 
addition, had these experiments been performed 
in an actual hospital, considerably more time and 
effort would have been required to obtain similar 
data for analysis. The use of computers in this 
case allowed us to obtain insights into the effi-
cacy of alternative treatment strategies quickly 
and thus allow for the rapid evaluation of a range 
of alternative treatment options without risk to 
patients.

An example of computational 
investigations to find numerical 
solutions: Spatial control of raccoon 
rabies

The vaccination of raccoons is used extensively 
to control the spread of rabies in this species 
and to prevent spillover into humans, domestic 
animals and other wildlife populations (Jackson 
& Wunner 2007). One aspect of the strategic 
use of vaccination is to incorporate the effects 
of landscape features, such as mountains and 
rivers, that inhibit or prevent the movement of 
raccoons (Jackson & Wunner 2007). Rivers in 
particular have been shown to significantly slow 
the advance of rabies which can be attributed to 

a decrease in the rate of short distance dispersal 
of raccoons across rivers (Smith et al. 2002). 
The spatial distribution of vaccination effort is 
also shaped by limited public health resources 
allocated to the control of infectious diseases 
in wildlife (Stark et al. 2006). These limitations 
place a premium on obtaining the best overall 
outcome, relative to management objectives, for 
the amount of investment in a vaccination policy. 
This section presents a model to illustrate how 
barriers to raccoon movement could be incor-
porated into an optimal rabies control policy to 
reduce the number of raccoon populations that 
must be vaccinated. The model is an extension 
of earlier analyses of spatial dynamics of rabies 
spread within the eastern US (Russell et al. 
2006).

Raccoon rabies was introduced from north-
ern Florida to the Virginia/West Virginia border 
in 1977 and has spread throughout the Mid-
Atlantic States (Hanlon & Rupprecht 1998). 
The westward spread of rabies has been halted 
by distributing vaccine-laden baits to form a 
cordon sanitaire, a vaccine barrier that extends 
southwest from Ontario, Canada into the United 
States, ending in Alabama (Real & Childs 2006). 
The current design for the cordon sanitaire has 
been largely successful at preventing the spread 
of raccoon-variant rabies into western states. 
To date, the only known breach of the cordon 
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sanitaire had taken place in northeast Ohio an 
was quickly contained (Russell et al. 2005). 
However, it is largely unknown how the design 
of the cordon relates to spatial heterogeneity. For 
example, it is unknown how the cordon width, 
the density of baits distributed within the cordon 
or the most effective time of year to distribute 
baits relates to changes in the quality of raccoon 
habitat or the presence of landscape features, 
such as rivers, that can impede raccoon move-
ment.

Spatial optimal control is an emerging area 
in epidemiological modeling that combines the 
spatial dynamics of infectious disease and the 
need to make the best use of resources. Recently, 
several models that apply spatial optimization 
have been developed to address the relationship 
between determinants of rabies spread and the 
optimal strategy for vaccinating raccoons. Asano 
et al. (2008) developed a spatial compartment 
model with susceptible, exposed and infectious 
classes to investigate the effects of spatial het-
erogeneity in the disease-free population on the 
optimal vaccination policy. Ding et al. (2007) 
developed a spatial optimal control model that 
includes the natural attrition of vaccine baits. 
Once distributed, vaccine baits have a limited 
lifetime. Many baits are consumed by raccoons, 
but they are also taken by non-target species or 
degrade from environmental exposure. Decreas-
ing the number of baits reduces the rate at which 
susceptible raccoons become vaccinated over 
time. Ding et al. (2007) used their model to show 
how optimal vaccination is influenced by natural 
attrition.

In this section a spatial optimal control model 
is used to investigate the effects of movement 
barriers on the optimal vaccination strategy. The 
optimal spatial vaccination policies are com-
pared for a landscape with and without a river. 
The results from the optimal control model are 
also compared with related results reported by 
Russell et al. (2006). The comparison highlights 
the effects of different management objectives 
on vaccination policy.

The dynamics of rabies spread among rac-
coons is described by a system of ordinary dif-
ferential equations (Russell et al. 2006). The 
model is based on a standard compartment based 
approach to disease modeling (Anderson & May 

1991) in which the population is divided into 
susceptible, exposed, infectious and immune 
classes. In addition, the model includes two age 
classes: juveniles and adults. The addition of age 
classes allows the model to include the effects 
of the increased death rates of juveniles relative 
to adults as well as differences in the movement 
behavior of the two classes (Stuewer 1943). The 
susceptible, exposed and infectious classes have 
interpretations typical of other SIR-type models. 
The immune class includes only raccoons that 
are vaccinated for rabies, and once vaccinated 
immune individuals cannot be infected. Rabies 
infections are always fatal to unvaccinated indi-
viduals, so there is no recovered class of indi-
viduals that have developed natural immunity 
(Jackson & Wunner 2007). Space is represented 
by a one-dimensional array of cells, and a sepa-
rate system of equations is used to represent 
dynamics within each spatial cell. Movement 
between cells involves juveniles in search of a 
home range. In addition, infectious individuals 
also move between cells as the result of behav-
ioral changes associated with rabies (Rosatte et 
al. 2006). The parameter values follow those of 
Russell et al. (2006) and Coyne et al. (1989). 
The model is allowed to reach a stable disease-
free limit cycle at which point a single infected 
individual is added at one end of the 1-D array.

The equations for our model are:

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)
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 J(0) = J0, L(0) = L0, V(0) = V0, S(0) = S0,
 E(0) = E0, R(0) = R0, I(0) = I0 (8)

where t represents time and i and  are spatial 
indices. The density of juveniles in cell i that 
are susceptible, latent and vaccinated are given 
by Ji, Li, and Vi, respectively. Adult densities in 
cell i are represented by Si, Ei, and Ri, which are 
the susceptible, latent and vaccinated classes, 
respectively. The total density of non-infectious 
adults is represented by Ai. Life expectancy and 
infectiousness are similar for both juveniles and 
adults (Jackson & Wunner 2007) and their total 
density is represented by a single state variable, 
Ii. Juveniles are born at a seasonal per capita rate, 
a(t). Raccoons are assumed to be uniformly vac-
cinated at a rate vi(t). The natural mortality rates 
for juveniles and adults are d and b, respectively. 
Juveniles experience a higher rate of mortality as 
a result of differences in foraging efficiency and 
body size (Stuewer 1943). Susceptible raccoons 
become exposed to rabies through direct contact 
with a rabid individual. The force of infection is 
given by b. The seasonal movement of juveniles 
in the fall is represented by M(t). During this 
time juveniles emigrate at a rate f. Juveniles 
immigrate into location i from other locations  
at a rate . The spatial domain of the model 
is closed with respect to movement so 
for all . We require kii = 0, that is there is no 
movement from a cell to itself. Juveniles are also 
exposed to increased mortality associated with 
moving across an unfamiliar landscape (Stuewer 
1943). Juveniles move in search of an area in 
which they can establish a home range. The 
suitability of a location depends on the avail-
ability of local resources and we assume that this 
depends on the density of adults. The term 
gives the adult density-dependent rate at which 
juveniles settle into a home range. The param-
eter s is the settlement rate in the absence of 
adults and gamma controls the rate at which the 
settlement rate decreases with increasing adult 
density. The initial conditions for the model are 
given in Eq. 8.

Once exposed, a raccoon becomes infectious 
at a rate s, which gives a mean latency period of 
1/s days. Disease-induced mortality occurs at 
a rate a. Since the life expectancy of rabid rac-
coons is short, ~14 days (Coyne et al. 1989), the 

disease-induced mortality rate dominates other 
sources of mortality. For this reason, disease-
induced mortality is the only form of loss from 
the infectious class. Infectious individuals emi-
grate out from a cell at a rate, y, and immigrate 
in from other cells  at a rate y . The  for 
infectious movement are the same as those used 
for juveniles.

We use this model to examine the role of bar-
riers to raccoon movement. Smith et al. (2002) 
has shown that there is a seven-fold decrease 
in the spread of rabies associated with rivers. 
This is interpreted as a reduction in raccoon 
movement across rivers. We, therefore, examine 
the optimum vaccination strategy produced with 
and without a river. The river is included in the 
model by designating one cell in the center of the 
10-cell array as a river. The density of raccoons 
in these cells is zero, and raccoons cannot enter 
these cells. However, occasional long-distance 
movement events can result in a raccoon cross-
ing a river, for example, a raccoon could use a 
bridge to cross the river.

A central element of an optimization model 
is the formulation of an objective function. The 
value of this function is the quantity that is to 
be minimized (or maximized). It represents the 
management goals for the system. The objec-
tive function used here minimizes the density of 
infected raccoons over time and space and the 
total vaccination effort. The objective function 
used is:

  (9)

where the value of this function is minimized 
over all cells i, and over all time, t. The parameter 
c represents the relative importance of increasing 
vaccination relative to an increase in the density 
of infectious raccoons.

Since rivers are barriers to the spread of 
rabies we would like to test if they could be 
incorporated in an optimal vaccination strategy. 
That is, we would like to know how spatial het-
erogeneity affects the optimal vaccination strat-
egy. We compare the projected optimal vaccina-
tion strategy for this objective with and without 
the effects of a river.

In this model, optimization is based on Pon-
tryagin’s Maximum Principle (PMP) (Kamien & 
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Schwarz 1991). The application of this approach 
requires the repeated numerical integration of 
the model equations plus an additional system of 
ordinary differential equations. The extra equa-
tions, called adjoints, link the model dynamics, 
the objective function and the control strategy. 
The application of PMP requires the creation 
of one new adjoint equation for each of the 
original model equations. Since there are seven 
differential equations for each cell in our rabies 
model, seven additional adjoint equations are 
created for each cell. The result is a system of 
14 differential equations for each spatial cell that 
must be solved to find the optimal vaccination 
strategy. Computationally, the solution involves 
the repeated numerical integration of the model 
equations forward in time and the numerical inte-
gration backward in time. The forward and back-
ward numerical integrations are repeated until 
the system converges on an optimal solution. For 
this model, the forward and backward numerical 
integrations are repeated several hundred times, 
requiring extensive computation. Lenhart and 
Workman (Lenhart & Workman 2007) give a 

thorough explanation of this technique, the addi-
tional mathematics required to prove uniqueness 
and existence of an optimal solution and the 
application to biological models. This approach 
has also been applied to compute the optimal 
implementation of chemotherapy to control HIV 
within a single individual (Kirschner et al. 1997) 
and to other aspects of rabies control (Asano et 
al. 2008).

The model results (Fig. 2) indicate that nat-
ural barriers that limit the movement of the 
host species result in different optimal treatment 
strategies. In both cases, the optimal strategy 
involves a vaccination rate that is initially very 
high followed by periodic intervals of relatively 
lower vaccination rates. The cyclic pattern of 
vaccination corresponds to the flush of suscepti-
ble juveniles created by the seasonal birth pulse. 
In both optimal strategies, an increase in the 
vaccination rate is applied over a range of cells. 
However, when there are no barriers to move-
ment and the spread of the disease, the vaccina-
tion rate must be increased in all locations. In 
contrast, when a river is present the rate at which 

Fig. 2. Plots of the optimal 
vaccination strategy with 
and without a river. — a: 
The optimal vaccination 
strategy without a river. — 
b: The optimal vaccination 
strategy with a river. The 
plots are colored accord-
ing to the vaccination 
rates at each point, with 
lower vaccination rates 
colored blue.
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raccoons move decreases and no vaccination is 
required beyond the river. This has important 
public health implications. In particular, these 
results indicate that natural barriers can be incor-
porated into an overall intervention strategy to 
reduce the total vaccination rate over the entire 
spatial domain and thereby reduce the effort and 
cost of a control program.

In this example, we have presented results 
for an objective function that minimizes the total 
density of rabid raccoons plus the cost of vac-
cination. This is only one of a range of possible 
management objectives that could be used. An 
alternative management objective might be min-
imizing the month-to-month variation in the vac-
cination rate to achieve a more consistent plan 
that could be logistically easier to implement.

The importance of management objectives in 
shaping vaccination policy is illustrated by com-
paring the optimization results with the results 
reported by Russell et al. (2006) based on Eqs. 
1–8. The management objective for the currently 
presented optimization model is to find the vac-
cination policy that minimizes the total density 
of infected raccoons and the cost of vaccination. 
The management objective used by Russell et 
al. (2006) was to choose which of two vaccina-
tion policies reduced the risk of rabies crossing 
the river. One policy placed the vaccine barrier 
“in front” of the river, that is between the river 
and the advancing rabies wave front. The other 
policy placed the vaccine barrier behind the 
river. Of the two options, vaccinating behind 
the river where rabies has not yet become estab-
lished resulted in the lowest risk of rabies cross-
ing the river. This result is based on two factors. 
First, withholding vaccination from areas where 
rabies is already established results in the sup-
pression of the overall population size and a cor-
responding reduction in the total number of rabid 
animals. Second, in the rare event that a rabid 
raccoon does cross the river, the rabid animal 
arrives in a vaccinated population. This reduces 
the risk of further rabies spread because the rabid 
animal is more likely to die before infecting 
a susceptible individual. In contrast, minimiz-
ing Eq. 9 requires vaccinating where rabies has 
become established to reduce the total density of 
infected raccoons. The differences in the conclu-
sions reached from these two results highlight 

the importance of clearly delineating the goals 
of management objectives, as achieving different 
goals can require vastly different policies.

Conclusion

Computational modeling approaches to epide-
miology have provided a number of advances 
in theory and practice. However, it is important 
to point out that in many cases, the strength 
of the results arising from these computational 
models is due in part to the incorporation of real 
world data. In the case of measles, the modeling 
program was motivated by patterns observed in 
an extensive record of measles cases for the US 
and Great Britain (Earn et al. 2000). In addi-
tion, these data sets are central to estimating 
model parameters and evaluating model results. 
The ability to map model results back to a real 
system significantly increases the strength of 
conclusions drawn from the models.

The range of models that can be considered 
using computers is not without limits. It is not 
very difficult to render a model computationally 
impractical. For example, a model can be made 
impractical by a sufficient increase in the spatial 
extent or resolution of a model. In many cases, 
the biology involved can be used to sidestep 
these difficulties. For example, many phenom-
ena have a characteristic scale, and the patterns 
created at a large scale may not depend on proc-
esses that operate at substantially smaller scales. 
In others, new mathematical or numerical tech-
niques may be developed to efficiently handle 
more complex problems.

Extending the range of biological mecha-
nisms that can be concurrently modeled can also 
be a liability. One problem is that as the com-
plexity of a model increases, it become progres-
sively more difficult to understand how particu-
lar mechanisms result in the patterns produced 
by the model. An inability to identify the role of 
particular mechanisms can significantly reduce 
the utility of a model.

Increasing the complexity of a model entails 
increasing the number of free parameters in 
the model. Values for these parameters must be 
estimated. One source for estimation is to draw 
on results from previously published empirical 
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studies. However, this approach has limitations. 
For example, model parameters may have to be 
based on distantly related species. In addition, 
reported estimates may not directly apply to 
model parameters, requiring additional assump-
tions to align the model with the data. Alterna-
tively, model parameters can be estimated by 
fitting the model to known time series. How-
ever, as the number of parameters in a model 
increase, the fit to data becomes progressively 
better, and confidence in the estimates and model 
decreases (Ginzburg & Jensen 2004). Numer-
ous approaches exist to address these problems 
(Hilborn & Mangel 1997). Careful application 
of these techniques can allow a more complex 
model to be used with a known degree of con-
fidence.

Another challenge facing epidemiology mod-
eling is acceptance of the modeling process and 
results by clinical researchers and practitioners. 
As clinical settings face more and more eco-
nomic challenges, the use of models provides 
an inexpensive alternative to help focus more 
expensive clinical trials. Models help narrow 
the choice of potential hypotheses. Increased 
education of medical and health care workers is 
needed to bridge the gap and provide access to 
the insights that modeling can bring to questions 
faced by researchers.

Computational models of infectious dis-
ease epidemiology have clearly contributed to 
advancements in understanding the dynamics 
and control of many diseases. As computing 
power continues to improve, existing techniques 
will be extended in new directions and additional 
techniques will be created. These advances will 
continue to expand the questions that can be 
asked, provide insights into disease dynamics 
and help save lives by focusing limited resources 
on the intervention strategies predicted to make 
the greatest impact.
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