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This essay grew out of an examination of one-tailed significance testing. One-tailed 
tests were little advocated by the founders of modern statistics but are widely used and 
recommended nowadays in the biological, behavioral and social sciences. The high 
frequency of their use in ecology and animal behavior and their logical indefensibil-
ity have been documented in a companion review paper. In the present one, we trace 
the roots of this problem and counter some attacks on significance testing in general. 
Roots include: the early but irrational dichotomization of the P scale and adoption of 
the ‘significant/non-significant’ terminology; the mistaken notion that a high P value 
is evidence favoring the null hypothesis over the alternative hypothesis; and confusion 
over the distinction between statistical and research hypotheses. Resultant widespread 
misuse and misinterpretation of significance tests have also led to other problems, such 
as unjustifiable demands that reporting of P values be disallowed or greatly reduced and 
that reporting of confidence intervals and standardized effect sizes be required in their 
place. Our analysis of these matters thus leads us to a recommendation that for standard 
types of significance assessment the paleoFisherian and Neyman-Pearsonian paradigms 
be replaced by a neoFisherian one. The essence of the latter is that a critical α (prob-
ability of type I error) is not specified, the terms ‘significant’ and ‘non-significant’ are 
abandoned, that high P values lead only to suspended judgments, and that the so-called 
“three-valued logic” of Cox, Kaiser, Tukey, Tryon and Harris is adopted explicitly. Con-
fidence intervals and bands, power analyses, and severity curves remain useful adjuncts 
in particular situations. Analyses conducted under this paradigm we term neoFisherian 
significance assessments (NFSA). Their role is assessment of the existence, sign and 
magnitude of statistical effects. The common label of null hypothesis significance tests 
(NHST) is retained for paleoFisherian and Neyman-Pearsonian approaches and their 
hybrids. The original Neyman-Pearson framework has no utility outside quality control 
type applications. Some advocates of Bayesian, likelihood and information-theoretic 
approaches to model selection have argued that P values and NFSAs are of little or no 
value, but those arguments do not withstand critical review. Champions of Bayesian 
methods in particular continue to overstate their value and relevance.
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“… the object of statistical methods is the reduction of data. A quantity of data … is to be replaced by 
relatively few quantities which shall adequately represent the whole ….” (Fisher 1922)

“The decade of the 1990’s has been a critical one in hypothesis testing’s protracted struggle for sur-
vival. During this decade especially vitriolic attacks, by especially viable attackers, in especially vis-
ible outlets … have been mounted for the greater good of God, country, and no significance testing.” 
(Levin 1998a)

“… use [of null hypothesis significance testing] has been explicitly denounced by most eminent and 
most experienced scientists, both on theoretical and methodological grounds ….” (Lecoutre et al.  
2001)

“Some academicians and philosophers have proposed that the social science community ban the use 
of statistical significance tests. Their declarations are not worth taking seriously. Getting beyond the 
rants about the limitations of conventional significance tests is important ….” (Boruch 2007)

Introduction

Misuse of one-tailed tests

Early versions of this essay had as a subtitle, 
“Lessons learned from an analysis of one-tailed 
testing”, as it grew out of an analysis of misuse 
and misprescription of one-tailed statistical tests 
in the natural, behavioral, and social sciences 
(Lombardi & Hurlbert 2009). That analysis 
examined the historical literature on the subject, 
criticized the vague, illogical and inconsistent 
advice usually offered by statistics books on 
it, and assessed frequency of use of one-tailed 
tests in the 1989 and 2005 volumes of two jour-
nals, Animal Behaviour and Oecologia. Aver-
aged over the two years, one-tailed tests were 
used in > 24% of Animal Behaviour articles and 
> 13% of Oecologia articles. Synthesizing the 
cogent arguments of a few earlier writers on the 
subject (Kimmel 1957, Goldfried 1959, Pillemer 
1991, Harris 2005), we concluded that one-tailed 
tests are rarely appropriate in basic or applied 
research in any discipline. A few textbooks have 
adopted this viewpoint (e.g. Welkowitz et al. 
1971, 1991, 2006, Fleiss 1981, 1986, Altman 
1991, Schulman 1992, Bart et al. 1998), but the 
great majority have not.

Thus, of the hundreds of one-tailed tests 
found in our survey, none was or could be justi-
fied logically. How did such inappropriate pro-
cedures become so widespread? Proximately, it 
surely has been the fault of the poor advice on 

the topic found in most statistics texts — and, 
presumably, in university courses that use those 
texts. But where did those texts and professors 
get their ideas?

The present article had its genesis in an 
attempt to answer that question. Close reading of 
the historical literature located three primary ori-
gins for the confusion. First are deficiencies in the 
decision theoretic framework that has dominated 
statistical practice in the English-speaking world 
from, roughly, the 1940s. That framework in its 
current form is “a mixture of [the methods of] 
R. A. Fisher, on the one hand, and Jerzy Neyman 
and Egon S. Pearson on the other, a mixture that 
none of these statisticians (certainly not Neyman 
and Pearson) would have approved” (Gigerenzer 
& Murray 1987, Gigerenzer et al. 2004). After a 
dissection of its history and incongruities, Sals-
burg (1993; see also Salsburg 1992) concluded: 
“And so the Neyman-Pearson formulation lays in 
rubble at our feet. It is an arbitrary construction 
with no apparent relationship to the needs of clini-
cal research.” Or, we would add, to any other type 
of research. That framework has promoted rigid 
and simplistic thinking by dichotomization of the 
scale of P values. It has also promoted the notion 
that a high P value constitutes evidence favoring 
the null over the alternative hypothesis.

A second source of confusion has been claims 
that researchers overemphasize P values and pres-
ent effect sizes and confidence intervals too infre-
quently. If true this would be simply bad science 
and bad writing and not a weakness of statistical 
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methods themselves. Combined with the illogic 
of a dichotomized P scale, these ideas have stimu-
lated some critics to propose that reporting of P 
values should be forbidden and only confidence 
intervals and effect sizes be allowed.

Third, the distinction between statistical 
hypotheses and scientific or research hypotheses 
has become blurred in the minds and writings 
of many scientists and statisticians. That confu-
sion has fostered use of one-tailed tests when 
researchers have not understood that a signifi-
cance test or assessment is just a procedure for 
summarizing certain properties of a particular 
data set and not by itself a test of a scientific 
hypothesis.

The proposed framework shift

The decision theoretic framework as presented, 
without that label, in Neyman and Pearson 
(1933a, 1933b) is summarized in Fig. 1, some 
version of which now appears in most introduc-
tory statistics textbooks. The italicized phrase 
illogical decision is our own modification of it.

This framework built on Fisher’s (1925) 
ideas of the null hypothesis and fixed critical 
P values for assessing statistical significance. 
To those, Neyman and Pearson added the con-
cepts of α as a long term (type I) error rate, of 
accepting the null hypothesis when P > α, and 
of alternative hypotheses, power and type II 
error (Neyman & Pearson 1933a, 1933b). The 
framework was further codified and expanded 
by Wald’s (1939, 1950) work on decision theory 
and then by Lehmann’s (1959, Lehmann & 
Romano 2005) classic treatise. But technically 
the two frameworks are fundamentally incom-
patible. Lenhard (2006) gives an excellent analy-
sis of the “profound conceptual basis” for the 
distractingly polemical battles between Fisher 
and Neyman and Pearson, which was that “both 
sides held conflicting views about the function of 
mathematical models and about the role of mod-
elling in statistical inference.”

We will advocate discarding the Neyman-
Pearson framework for most significance testing 
situations and replacing it with an explicitly 
neoFisherian one that (1) does not fix α; (2) does 
not describe P values as ‘significant’ or ‘non-

significant’; (3) does not accept null hypoth-
eses on the basis of high P values but only sus-
pends judgment; (4) interprets significance tests 
in accord with the “three-valued logic” of Cox 
(1958), Harris (1997a) and others; (5) recognizes 
the obvious, near universal need to present effect 
size information in conjunction with significance 
tests; and (6) acknowledges the frequent util-
ity of confidence intervals (and other adjunct 
statistics helpful to interpretation) as well as the 
fact that they are often unneeded. Procedures 
carried out under this paradigm we refer to as 
neoFisherian significance assessments (NFSA). 
This label may help diminish the notion that they 
constitute tests of scientific hypotheses. It also 
distinguishes them from null hypothesis signifi-
cance tests or testing (NHST), a label that can be 
retained for procedures carried out under paleo-
Fisherian or Neyman-Pearsonian paradigms. As 
we discuss later, Neyman and Pearson seem not 
to have intended their framework to be used in 
scientific work in the rigid manner adopted in 
many quarters, and, by the end of their careers 
might have found what we term the neoFisherian 
paradigm quite reasonable.

For anyone contemplating adoption of the 
neoFisherian framework, an immediate concern 
is how it would affect their own writing. ‘How 
does this system actually work?’, some review-
ers of this paper asked. There is a foreboding 
sense the shift would be seismic, draconian, 
but it would not be. Adoption leads to simpler, 
clearer, more natural writing. Perhaps that is why 
neoFisherian manuscripts have been sneaking 
into the literature ‘under the radar’ of paleoFish-
erian and Neyman-Pearsonian editors for years. 

Decission
Reality

H0 true H0 false

Accept H0
when P > α

correct conclusion 
illogical decision

Type II error 
probability = β

illogical decision

Reject H0
when P ≤ α

Type I error 
probability = α

correct conclusion 
probability = 1 – β

= power

Fig. 1. The Neyman-Pearson decision theoretic frame-
work. We have inserted “illogical decision” in two of the 
boxes to emphasize that high P values do not consti-
tute evidence in favor of H0. Hence acceptance of H0, 
or preference for it over H1, is never a logical decision, 
and type II errors are risked only by those who do not 
understand this fact.
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Here, for example, is a ‘random’ selection of 
ecological papers all of which use significance 
tests of one type or another and all of which con-
form to the neoFisherian paradigm in their inter-
pretations and language: Greenwald and Hurl-
bert (1993), Hart et al. (1998), Timms (1998), 
Detwiler et al. (2002), Caskey et al. (2007), 
Henny et al. (2007), Moreau et al. (2007), Reifel 
et al. (2007), Sardella et al. (2007), Swan et al. 
(2007), Sockman (2008), Lombardi and Hurl-
bert (2009). These provide examples of nuanced 
interpretation of P values and show just how 
dispensable ‘α’ and ‘significant’ are.

Dichotomization of the P scale

P ≤ α; tails? who cares!

The popularity of one-tailed tests (Burke 1953, 
Siegel 1956, Fleiss 1987, Peace 1989, 1991, 
Zar 2004, Lombardi & Hurlbert 2009) is due, in 
part, to the idea that significance testing requires 
specification of α, a fixed critical P value (Simon 
1986, Freedman et al. 1991). This dichotomiza-
tion of the P scale and our language interferes 
with the clear presentation and judicious inter-
pretation of statistical analyses. Large numbers 
of statisticians and scientists have strongly criti-
cised this dichotomization, a fact of which most 
researchers and authors of statistics textbooks 
seem unaware. The notion that critical P values 
must be specified has more to do with person-
alities, unclear writing, and accidents of history 
than with logic or utility.

Freedman et al. (1991) noted “It is the arbi-
trary lines at 5% and 1% which make the dis-
tinction between two-tailed and one-tailed tests 
loom so large. There is no sharp dividing line 
between probable and improbable results. A P 
value of 5.1% means just about the same thing 
as 4.9%. However, these two P values can be 
treated quite differently, because many journals 
will only publish results that are ‘statistically 
significant’ — the 5% line. Some of the more 
prestigious journals will only publish results 
which are ‘highly significant’ — the 1% line.”

A prime example: an editor of the Journal of 
Experimental Psychology once explained, “In 
editing the Journal there has been a strong 

reluctance to accept and publish results related 
to the principal concern of the research when 
those results were significant [only] at the 0.05 
level, whether by one- or two-tailed test [our 
emphasis]” (Melton 1962). Such policies and 
attitudes on the part of editors and manuscript 
reviewers have provided strong incentive to the 
use of one-tailed tests by naive researchers. Why 
risk manuscript rejection with your P value of 
0.08 from a two-tailed test, when you can quietly 
make a post hoc ‘prediction’, redo your test as a 
one-tailed one, and obtain P = 0.04?

Old roots

The idea of fixing α and dichotomizing the scale 
of P values has old roots (Hogben 1957, Cowles 
& Davis 1982, Hall & Selinger 1986, Gigerenzer 
& Murray 1987, Cowles 1989, Salsburg 1992, 
Huberty 1993, Inman 1994). By the early 19th 
century some scientists were quantifying the 
‘spread’ of the normal distribution by the prob-
able error. This is equal to 0.6746 times the 
standard deviation though the latter term was 
coined much later (Pearson 1894). In a normal 
distribution, 50% of the observations lie within 
one probable error of the mean.

Dichotomization of terminology followed 
development of the concept of probable error. 
Venn (1866) referred to the concept of sig-
nificance, and in a later work (Venn 1888: 147) 
stated, “When we are dealing with statistics, we 
ought to be able not merely to say vaguely that 
the difference does or does not seem significant 
to us, but we ought to have some test as to what 
difference would be significant.” W. S. Gosset 
(Student 1908) suggested that a deviation from 
the mean “three times the probable error in the 
normal curve, for most purposes, would be con-
sidered significant.” In this he was almost cer-
tainly following the lead of Karl Pearson whose 
lectures at University College London Gosset 
had attended in 1906. In his unpublished lecture 
notes, Karl refers to deviations greater than three 
probable errors as “definitely significant.” But 
Karl did not think in terms of hard dichotomies 
and also spoke of “not definitely,” “possibly,” 
“probably,” and “almost certain[ly]” significant 
(Stigler 2000, 2005, Ziliak & McCloskey 2008).
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The paleoFisherian paradigm

The tail areas of the curve beyond the mean plus 
or minus three probable errors sum to 4.56%. In 
his influential manual, Statistical Methods for 
Research Workers, Fisher (1925) rounded this 
4.56% to 5% when publishing the first tables of 
z, t, and χ2 values corresponding to specific criti-
cal P values. He recommended, in connection 
with the z test, that it was “convenient to take 
this point [P = 0.05] as a limit in judging whether 
a deviation is to be considered significant or not” 
(p. 47). He also stated that “in practice we do 
not want to know the exact value of P for any 
observed χ2, but, in the first place, whether or not 
the observed value is open to suspicion …. We 
shall not often be astray if we draw a conven-
tional line at .05 and consider that higher values 
of χ2 indicate a real discrepancy” (p. 79). By the 
13th edition, this last sentence had been changed 
to: “A [χ2] value exceeding the 5 per cent point 
is seldom to be disregarded” (Fisher 1958: 80). 
This focus on 5% notwithstanding, six of the 
seven tables in Fisher (1925) gave test statistic 
values corresponding to several other P values 
(Stigler 2008).

In his other influential book, The Design of 
Experiments, Fisher (1935a: 15) stated, “It is 
usual and convenient for experimenters to take 5 
per cent as a standard level of significance, in the 
sense they are prepared to ignore all results which 
fail to reach this standard ….” This statement 
persisted through all editions of that book.

Null hypothesis testing has no inherent 
requirement that an α be specified or that the 
‘significant/non-significant’ terminology be 
adopted. Fisher may have been impelled to those 
conventions, however, not only by historical 
antecedents but also by a very practical and per-
sonal obstacle. Kendall (1963) relates that: “He 
[Fisher] himself told me that when he was writ-
ing Statistical Methods for Research Workers he 
applied to Pearson for permission to reproduce 
Elderton’s table of chi-squared and that it was 
refused. This was perhaps not simply a personal 
matter because the hard struggle which Pearson 
had for long experienced in obtaining funds 
for printing and publishing statistical tables had 
made him most unwilling to grant anyone per-
mission to reproduce. He was afraid of the effect 

on sales of his Tables for Statisticians and Bio-
metricians [K. Pearson 1914] on which he relied 
to secure money for further table publication. It 
seems, however, to have been this refusal which 
first directed Fisher’s thoughts towards the alter-
native form of tabulation with quantiles as argu-
ment, a form which he subsequently adopted for 
all his tables and which has become common 
practice.”

This is what Fisher referred to when he 
explained the absence from his book of more 
extended tables as “owing to copyright restric-
tions” (Fisher 1925: 78, 1958: 79). Fisher did not 
invent the ‘significant/non-significant’ dichot-
omy, but his books and novel tabulations of criti-
cal values of test statistics played a large role in 
its rapid and wide dissemination.

Enshrinement of the dichotomy was com-
pleted when Neyman and Egon Pearson (1933a) 
adapted the ideas of significance testing to create 
their decision theoretic framework. In contrast 
to Fisherian significance testing, this approach 
requires the specification of α and is suited for 
situations, such as industrial quality control or 
“commercial specifications” (Neyman & Pear-
son 1933b), where different actions will be taken 
according to whether P ≤ α or P > α. Where the 
weighing of evidence, and not the taking of an 
action on the basis of a single significance test, 
is called for, as in virtually all basic and applied 
research, the specification of α is superfluous. 
It only incites inappropriately dichotomous lan-
guage and thinking. But since Fisher, Neyman 
and E. Pearson disagreed on other statistical mat-
ters, often vehemently and publicly, the fact that 
they seemed to agree on the need to specify α 
has carried great weight. Since that time, recipe-
hungry researchers, editors, and textbook writers 
have taken α specification as an obligatory step 
in the carrying out of significance tests. Such 
specification and a refusal to accept H0 when P 
> α are core elements of the paleoFisherian para-
digm of significance testing.

It is ironic that, though Fisher’s (1925) tabu-
lation of critical P values was driven by practi-
cal considerations, publication of those tables 
shortly before Neyman and Pearson began their 
collaboration in 1926 was a key stimulus to 
Neyman and Pearson basing their framework 
on an obligatory a priori setting of α (Lehm-
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ann 1993). Moreover, the proposition of a clear 
evidentiary standard such as α = 0.05 may have 
been a critical and “brilliant stroke of simplifica-
tion that opened the arcane domain of statisti-
cal calculation to a world of experimenters and 
research workers” who were confronting the 
new statistical methodologies with some trepida-
tion (Stigler 2008).

There were additional ironies. Neyman and 
Pearson’s (1933a) paper putting forward the 
decision theoretic framework was communi-
cated to the Royal Society of London in 1932 
by Karl Pearson “who was hostile and skepti-
cal of its contents” (Reid 1982: 103), possibly 
because it furthered the notion of a need to 
specify α. Karl was not only E. Pearson’s father, 
he also developed the χ2 test and applied it in the 
first systematic use of significance testing. Karl, 
however, did not specify α or critical P values, 
in carrying out his tests. A few years later he 
(Pearson 1935b) said it was “unwise” of Fisher 
(1925) to have created “tables which provide 
only the [critical test statistic] values of [for] P 
= 0.01 and P = 0.05,” as in the expanded z table 
in Fisher (1930). Karl Pearson further stated that 
“The value of P at which we consider good-
ness or badness of graduation [i.e. conformity 
or disconformity with H0] starts cannot be fixed 
without regard to the special problem under 
consideration.” In other words, calculate P, but 
perhaps there is no need to specify α.

Unfortunately this message did not carry. 
Karl Pearson, then two years into retirement, 
was not only justifiably going against Fisher, 
Neyman, and E. Pearson on α specification, 
he was also justifiably under fire from Fisher 
(1935b) and Buchanan-Wollaston (1935) for use 
of χ2 as a “goodness-of-fit” test, i.e. as a way of 
confirming null hypotheses or of measuring the 
“goodness of graduation” (Inman 1994). Sig-
nificance tests can never confirm or provide evi-
dence in favor of null hypotheses. Debates where 
each side is half right and half wrong often lead 
the audience astray. The “goodness-of-fit” label 
was and is a highly misleading one. It probably 
bears some responsibility for decades of misuse 
and misinterpretation of χ2 and related tests. 
“Badness-of-fit” would be a label more conso-
nant with what χ2, like other signficance tests, 
actually assesses.

Some other early textbook writers suggested 
that exact P values be reported (Hagood 1941: 
447–451, Mather 1951: 21). None went so far, 
however, as to state explicitly that specification 
of α could therefore be dispensed with.

The neoFisherian paradigm

Toward the end of his life Fisher came close to 
admitting that K. Pearson was correct, that the 
specification of α was superfluous, and that the 
reporting of exact P values was desirable, albeit 
often still difficult in the 1950s, well before the 
advent of statistical software packages. In his 
last and more philosophical book, Fisher (1956) 
said, “no scientific worker has a fixed level of 
significance at which from year to year, and in 
all circumstances, he rejects [null] hypotheses; 
he rather give his mind to each particular case in 
the light of his evidence and ideas.” This thought 
was also incorporated into the last editions of his 
two more influential books. In the 13th edition 
of Statistical Methods for Research Workers, 
Fisher (1958: 128) inserted the statement that 
“tests of significance are used as an aid to judg-
ment, and should not be confused with automatic 
acceptance tests or ‘decision functions’.” In the 
7th edition of The Design of Experiments, Fisher 
(1960) added a new, one-page section titled “Sci-
entific Inference and Acceptance Procedures.” 
This contrasted the use of significance tests for 
weighing of evidence with their use in accep-
tance procedures a la Neyman and Pearson. In 
that section, Fisher stated (p. 25), “Convenient 
as it is to note that a hypothesis is contradicted 
at some familiar level of significance such as 5% 
or 2% or 1%, we do not, in Inductive Inference, 
ever need to lose sight of the exact strength [i.e. 
exact P value] which the evidence has in fact 
reached ….” Ziliak and McCloskey (2008: 232) 
aware of Fisher’s 1956 statement but not those 
of 1958 and 1960, reject the idea that there had 
been a genuine evolution of Fisher’s thought. 
They claim, without evidence, that Fisher was 
only “playing a game … fearful of losing influ-
ence” to other statisticians.

Those added statements were perhaps the 
most fundamental changes made over the many 
editions of these two books. But they were brief, 
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belated and somewhat cryptic, and, in any case, 
by 1958 much damage had been done. Large 
numbers of statistics books were on the market, 
and the great majority had adopted the hybrid 
Neyman-Pearson-paleoFisherian decision frame-
work and its requirement of α specification.

The force of these text changes was also 
diminished by Fisher’s retention, in the sev-
enth and subsequent editions of The Design of 
Experiments, of a statement contradicting them. 
This was the “usual and convenient” statement 
quoted earlier. That statement implies that if α 
has been set at 0.05, then it is proper to “ignore” 
a result associated with a P value of 0.06. That 
was the only prescription that Fisher offered his 
readership for the 25 years preceding the 7th edi-
tion of The Design of Experiments and 33 years 
preceding the 13th edition of Statistical Methods 
for Research Workers.

Clearer distillation of the arguments against 
α specification appeared about the same time as 
Fisher’s near recantation. Cox (1958: 366–368) 
offered what might be regarded as the first précis 
of the neoFisherian paradigm, opposing “rigid 
dividing line[s]” and also advocating, with Yates 
(1951), more attention to effect sizes. Eysenck 
(1960) argued bluntly against the specification 
of an α and against use of the terms “signifi-
cant” and “insignificant” (or ‘non-significant’). 
He pointed out that these habits have “no obvi-
ous advantage,” usually no logical rationale, and 
tend to lead to “gross absurdities” and increas-
ingly convoluted language (“almost significant,” 
“significant at the 10% level,” etc.), as when we 
set α = 0.05 and obtain two P values of 0.04 
and 0.06, respectively. He argued for reporting 
exact P values and taking the interpretation from 
there. Skipper et al. (1967) reviewed the issue 
and concluded that, “Tradition notwithstanding, 
there seems to be little justifiable reason [for 
dichotomizing our interpretation of the P scale 
and recommended that] scientists … do away 
with arbitrary levels of significance, and the call-
ing of one test result ‘significant’ and another 
‘not significant’.”

In his detailed retrospective analysis of R. A. 
Fisher’s works, Savage (1976) observed that “[a]
pparently there have been statisticians who rec-
ommended actually picking a level [of α] before 
an experiment and then rejecting or not accord-

ing as that level was obtained. I do not have 
the impression that any professional statisticians 
make that recommendation today, though it is 
still often heard among those who are supposed 
to be served by statistics ….” We agree with the 
implication that researchers in the social and 
natural sciences in the 1970s, as now, were using 
the inappropriate decision-theoretic framework 
and terminology. We are less certain, however, 
about the blamelessness of “professional stat-
isticians” in promoting that framework, then 
or now. Huberty (1993) reviewed 57 statistics 
textbooks written for the behavioral sciences 
between 1910 and 1992 and found that since the 
1950s the fixed-α approach has strongly domi-
nated. We assume that many of these authors 
were or are “professional statisticians.” On the 
other hand, Salsburg (1992: 26) claimed that, 
“Philosophically, the English school [of statis-
tics] continues to follow Fisher, using signifi-
cance tests as a relatively vague and rough 
cutting tool, where there is no predetermined 
level of significance that signifies action or non-
action.” As English statistician Altman (1991: 
168–169) puts it, “It is ridiculous to interpret 
the results of a study differently according to 
whether the P value obtained was, say, 0.055 
or 0.045. These P values should lead to very 
similar conclusions, not diametrically opposed 
ones …. In recent years there has been a wel-
come move away from regarding the P value as 
significant or not significant, according to which 
side of the arbitrary 0.05 value it is, towards 
quoting the actual P value …. Forcing a choice 
between significant and non-significant obscures 
the uncertainty present whenever we draw infer-
ences from a sample.”

Journal editorial boards and other textbook 
authors are still stumbling on this issue. Current 
instructions for contributors to Animal Behav-
iour (2009), for example, specify that α shall 
be set at 0.05 in absence of specific justifica-
tion for another value, and that “Nonsignificant 
outcomes should be indicated with an exact 
probability value wherever possible, or as NS 
or P > 0.05, as appropriate for the test.” Gotelli 
and Ellison (2004: 97–98) throughout their text 
emphasize the supposed need to establish “the 
precise cutoff point [α] that we should use in 
making the decision to reject or not reject the 
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null hypothesis” and, in two hypothetical exam-
ples (p. 329, 334) imply that reporting only “P < 
0.05” or “ns” is adequate. But they also suggest 
that “in many cases, it may be more important 
to report the exact P-value and let the readers 
decide for themselves how important [perhaps 
certain is intended here] the results are.”

From discussion of this issue with other 
scientists, it seems the biggest psychological 
impediment to the acceptance of the neoFish-
erian paradigm is a reluctance to throw out that 
deceptive crutch, the phrase ‘statistically signifi-
cant’. As Stoehr (1999) points out, we all would 
like a “quick, objective and automatic way” to 
evaluate our results, but there is none that also 
meets the additional requirements of ‘logical’ 
and ‘useful’. We must simply apply the same 
sorts of nuanced thinking and nuanced language 
we use in other contexts involving gradations in 
strength of evidence.

If the critics of the idea that α must be speci-
fied had been widely heeded, which they clearly 
have not been, natural and social scientists 
would have been spared decades of misleading, 
sleep-inducing reportage of statistical analyses 
in language of the decision theoretic framework. 
Though many modern statisticians and scientists 
have recommended the reporting of exact P 
values and less foolishness over the mystical α 
(e.g., Cox 1958, 1977, 2006a, Gibbons & Pratt 
1975, Henkel 1976, Barnard 1982, Altman et al. 
1983, Mead & Curnow 1983, Yates 1984, Moore 
1985:323, Ware et al. 1986, Gardner & Altman 
1989, Rosnow & Rosenthal 1989, Camilli 1990, 
Daniel 1990, Freedman et al. 1991, Wilkinson & 
TFSI 1999, Salsburg 1992, 1993, Huberty 1993, 
Wang 1993, Frick 1996, Rossi 1997, Stoehr 
1999, Kline 2004, Christensen 2005, Hubbard 
& Armstrong 2006, Fidler et al. 2006), editors, 
textbook writers, and researchers have yet to 
give them much credence.

A core principle of this neoFisherian para-
digm, then, is that in testing situations, an α 
should not be specified, and terms such as ‘sta-
tistically significant’ and ‘statistically non-sig-
nificant’ should not be used, nor should useless 
and misleading symbolic notation such as ‘ns’ 
and ‘P > 0.05’. The neoFisherian label seems 
appropriate for three reasons. First, Fisher clearly 
was moving toward this position at the end of his 

career. Second, his original conception of sig-
nificance testing did not require specification of 
a critical P value even though he appended that 
superfluity to it for reasons essentially psycho-
logical, historical and accidental in nature. And 
third, other concepts formalized by Neyman and 
Pearson but that we regard as admissible under 
the neoFisherian paradigm — such as alternative 
hypotheses, power, and confidence intervals — 
were all implicit in Fisherian significance testing 
regardless of what Fisher said about them or of 
how unsuccessful his idea of “fiducial intervals” 
proved to be. Spanos (1999: 561) notes, “As far 
as testing is concerned …. Fisher’s procedure 
has not been superseded by that of Neyman and 
Pearson as the traditional treatment [in textbooks] 
would have us believe.” A neoFisherian approach 
should overcome some of the principal objections 
of that majority of critics of significance testing 
who have mistakenly assumed α specification to 
be an obligatory component of such procedures.

Although Gigerenzer et al. (2004) advance 
the unsupportable proposition that “Only when 
one knows extremely little about a topic … 
might a null hypothesis test be appropriate,” 
they at least do not recommend banning them. 
More favorably, they do advocate the neoFish-
erian position and strongly recommend against 
teaching the paleoFisherian or Neyman-Pearso-
ninan paradigms or hybrids of them. Likewise, 
though they also say that significance tests have 
only “marginal value,” Hubbard and Armstrong 
(2006) suggest that when they are employed, this 
should be done in a neoFisherian manner. They 
also usefully emphasize the critical distinction 
between α and P, the fact that a P value cannot 
be interpreted as an ‘observed’ α, and the mostly 
ignored fact that “α plays no role in Fisherian 
significance … [and] the p value plays no role in 
N-P [Neyman-Pearson] tests” once the accept/
reject decision demanded by that paradigm is 
made. Pollard and Richardson (1987), Goodman 
(1999a) and Hubbard and Bayari (2003) give 
good clarifications of the α-P distinction also.

There are at least three books that in different 
ways advocate the neoFisherian paradigm. One, 
an advanced text on mathematical statistics, 
is actually titled Principles of statistical infer-
ence from a neo-Fisherian perspective (Pace & 
Salvan 1997). Spanos’s (1999) magnum opus 
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is admirable for its thoroughness, clarity and 
implicit advocacy of the neoFisherian paradigm, 
although, ironically, Ziliak and McCloskey 
(2008: 107) congratulate Spanos for “trying to 
crack the Fisher monopoly on advanced econo-
metrics.” We do, however, chide Spanos (1999) 
in a later section for its misinterpretation of high 
P values. The book’s scope is broader than its 
subtitle might seem to imply and deserves the 
attention of all disciplines. The third book, Cox 
(2006a), also deserves a wide audience. It is an 
elegant extended essay by one of the world’s 
pre-eminent statisticians and is more focused on 
the philosophical and logical issues that are the 
subject of this article, with emphasis on com-
parison of Bayesian and frequentist methods. All 
three books advocate for most scientific work the 
reporting of exact P values and the superfluity of 
fixed α’s, and, by implication, the inappropriate-
ness of the ‘significant/non-significant’ terminol-
ogy. Perhaps they presage and provide a founda-
tion for a new generation of statistics textbooks.

Mellowing of Neyman and Pearson

Neyman and E. S. Pearson both seem to have 
recognized that the formal rigidity of their frame-
work was not well suited to scientific research. 
In her reformulation of the Neyman-Pearson par-
adigm, Mayo (1992, 1996: 377–395, 407–411), 
building on the detective work and suggestions 
of Birnbaum (1977), gives a convincing analysis 
of how Pearson retreated early. The “hints and 
suggestions” in E. S. Pearson’s published and 
unpublished writings, from his first paper with 
Neyman (Neyman & Pearson 1928) to a much 
later reflective essay (Pearson 1955) indicate 
that Pearson in fact “rejected the statistical phi-
losophy that ultimately became associated with 
NP statistics.” He seems to have recognized that 
“evidential” rather than “behavioral” (i.e. accept/
reject) interpretations of test results made more 
sense in scientific work, and that there should be 
flexibility in interpreting P values ≥ α. Shades 
of Karl Pearson’s 1905–1906 lecture notes! Was 
Egon honoring his father while also becoming a 
closet neoFisherian?

There is good evidence in his papers of the 
1950s that Neyman also had second thoughts 

(Mayo & Spanos 2006). We have pointed out 
(Lombardi & Hurlbert 2009) that although “Sals-
burg (1992: 23–24) claimed that Neyman never 
championed the [decision theoretic] framework 
after the mid-1930s and seemingly ‘agreed in 
principle with most of Fisher’s criticisms’ of it,” 
Neyman (1950, 1976) did champion the frame-
work in its standard form in his textbook and a 
later essay. Recognizing the appropriateness of 
‘evidential’ rather than ‘behavioral’ (Birnbaum 
1977) interpretations of significance tests in sci-
entific as opposed to industrial contexts, Neyman 
may have become a ‘situational’ statistician, 
defending one position in his theoretical writings 
and adopting a more flexible one in empirical sci-
ence contexts. In 1964, Neyman wrote to E. S. 
Pearson, “The time when I was a theoretician is 
past. Now it’s either galaxies, or cell division, or 
carcinogenesis, etc.” (Reid 1982: 267) — and, 
as it proved shortly, cloud seeding for rain pro-
duction. In a later philosophical essay, Neyman 
(1977: 112) recounted their cloud-seeding stud-
ies, and labeled P values of 0.09, 0.03, and < 0.01 
reported in their earlier paper (Lovasich et al. 
1971), as “approximately significant,” “signifi-
cant,” and “highly significant,” respectively. The 
dichotomies of the paleoFisherian and Neyman-
Pearsonian frameworks were quietly admitted 
to be less appropriate than more nebulous inter-
pretations — at least in cloud work! Indeed, Cox 
(2006a: 43, 195) has noted that “the differences 
between Fisher and Neyman … were not nearly 
as great as the asperity of the arguments between 
them might suggest … [and in] actual practice 
… Neyman … often reported p-values whereas 
some of Fisher’s use of tests … was much more 
dichotomous”!

A brave last gasp

A strange argument for fixing α values is found 
in Frick’s (1996) otherwise excellent defense of 
null hypothesis testing when appropriately used. 
Frick recommends that α not only be fixed but 
that it be fixed at 0.05. He thus defies many 
modern journals and textbooks which suggest that 
it can be set higher or lower than 0.05 according 
to some usually vaguely defined ‘specifics of the 
situation’ or postulated relative costs of type I and 
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type II errors. Referencing earlier authors, Frick 
counters that “there is little reason for experiment-
ers to choose different levels of alpha … [as] two 
different experimenters should not reach different 
statistical conclusions given the same data … it is 
appropriate that alpha is set by the enterprise of 
psychology.” Or, perhaps, he might suggest, by 
the “enterprise” of science as a whole?

Frick’s clearly presented reasoning is valid 
only if we accept his premise that some α always 
needs to be specified and that the ‘significant/
non-significant’ terminology is to be used. In 
that case, a result yielding P = 0.07 would likely 
be described and interpreted differently by two 
researchers, one who sets α = 0.05 and another 
who sets α = 0.10.

Once the superfluous, paleoFisherian-Ney-
man-Pearsonian premise is disposed of, however, 
the problem disappears, and the two researchers 
would likely come to more similar conclusions. 
Similar, not identical, of course, for individu-
als will always vary as to what they might term 
‘tentative’, ‘moderate’, ‘strong’, or ‘very strong’ 
evidence against H0.

The larger question Frick (1996) poses, and 
answers, is, “Should the experimenter decide 
what amount of evidence is sufficient for a find-
ing to enter the corpus of psychology? Obvi-
ously not.” We agree. Editors and referees — 
and hopefully a wider readership — can and 
will make their own varied decisions as to what 
weight to accord that P = 0.07 and will do so 
more judiciously in the absence of any pre-
scribed α. When all other criteria determining 
the value of a study to “the corpus of pys-
chology” are taken into account, good editors 
and referees will find some results with P = 
0.07 more valuable and publishable than others 
with P = 0.02. So we agree with Frick that 
“allowing the experimenter to select alpha is 
unneeded and inappropriate.” Let’s just also not 
give that authority to editors, editorial boards, 
and all Higher Level Committees! They have 
no grounds for demanding specification of α, 
let alone the setting of it at any particular value. 
Ziliak and McCloskey (2008: 249) concur: “No 
uniform minimum level of Type I error should be 
specified or enforced by journals, governments, 
or professional associations.”

Acceptance of null hypotheses

A second defect of the decision theoretic frame-
work is the notion that when P > α, this is evi-
dence that H0 is true and should be ‘accepted’ or 
‘retained’. That interpretation of high P values 
is neither a logical nor a necessary component of 
significance testing. It is, however, a notion pres-
ent in the original formulation of the framework 
(Neyman & Pearson 1933b), and it represents one 
of the most widespread misinterpretations of sig-
nificance tests by scientists (Grant 1962, Henkel 
1976, Oakes 1986, Sedlmeier & Gigerenzer 1989, 
Cohen 1990, Altman 1991, Inman 1994, Schmidt 
1996, Hurlbert 1998, Johnson 1999, Marden 
2000, Tryon 2001, Hurlbert & Lombardi 2003, 
Balluerka et al. 2005, Levine et al. 2008a, b). Dar 
et al. (1994), for example, found that of 163 psy-
chotherapy studies published during 1967-1988, 
36% interpreted “[N]onsignficant results of … 
ANOVAs … to mean that the groups were sta-
tistically equivalent.” Of 200 articles published 
in Ecology and Journal of Ecology in 2001–2002 
or 2005 that reported a “non-significant result”, 
Fidler et al. (2006) noted that 47% in 2001–2002 
and 63% in 2005 interpreted P > α as “no effect.” 
Krueger (2001) claimed that “reasoning pragmati-
cally, most researchers” accept H0 when P > α. 
Taylor and Gerrodette (1993) warned how bad 
management decisions could result from accep-
tance of null hypotheses in conservation biology 
studies. This could occur if these are interpreted in 
terms of “the dominant paradigm for hypothesis 
testing … [that] involves a yes/no decision about 
the falsity of the null hypothesis” and no account 
is taken of the often low power of such studies 
deriving from small sample sizes, the infeasibil-
ity of manipulative experiments, and other con-
straints.

An early discussion in Nature

The logical fallacy involved in accepting H0, or 
retaining it but not H1 also, on the basis of a high 
P value, though codified by Neyman and Pear-
son (1933a, 1933b), was not original with them. 
It doubtless evolved in close conjunction with 
the idea of a dichotomized P scale, K. Pearson’s 
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and W. S. Gosset’s (Student 1906–1907, Berkson 
1942) notions about ‘goodness-of-fit’ tests, and 
Gosset’s (Student 1908) original misinterpreta-
tion of P as the probability that H0 is true. As 
early as 1931 even statistics texts had begun 
stating, “The [null] hypothesis is accepted if the 
level is fairly high and … if the level is low (say 
below 0.05) the hypothesis is rejected” (Tippett 
1931: 69–70).

An early discussion of the fallacy was 
provided in a series of letters by Buchanan-
Wollaston (1935), Fisher (1935b), and K. Pear-
son (1935a, 1935b) in Nature (Inman 1994). 
Buchanan-Wollaston raised the issue giving it as 
one reason for distrust by Continental statisticians 
and scientists of British statistical procedures. 
Fisher replied that “Mr. Buchanan-Wollaston’s 
point that [tests of significance are] cogent for 
the rejection of [null] hypotheses but not for their 
acceptance, deserves to be widely appreciated,” 
and made the further valid point that “‘errors of 
the second kind’ [Type II errors] are committed 
only by those who misunderstand the nature and 
application of tests of significance.” A person can 
voluntarily risk making a Type II error, i.e. risk 
accepting H0 or retaining only it when it is false, 
but such a risk is never compelled or argued for 
by the outcome of a significance test. If P is high 
and one decides that H0 cannot be rejected, one 
suspends judgment, and the only error possibly 
committed is that of having wasted resources on 
a study that provides no firm basis for choosing 
between H0 and H1 or for stating the direction 
(sign) of an effect. Such a study, of course, may 
provide useful information relative to statistical 
hypotheses other than the original one tested. For 
example the hypothesis that µA is at least 50% 
greater than µB could be confidently rejected on 
the basis of the data in Table 1.

Unfortunately this simple message on the 
illogic of allowing a P value ever to drive the 
acceptance of H0 did not come through this 
scrambled Fisher-Pearson exchange. The letters 
addressed several other issues and were used by 
Fisher and Pearson to throw barbed comments at 
each other. More importantly, in the final letter of 
the exchange, Pearson (1935b) misread Fisher’s 
unclear prose and accused him of a “logical 
fallacy” whereas the two men almost certainly 

were in agreement on the point at issue. Fisher 
(1935b) had stated that “tests of significance, 
when used accurately … are never capable of 
establishing [null] hypotheses as certainly true.” 
Pearson (1935b) countered that significance tests 
do not establish the truth or falsity of hypotheses, 
but only can provide evidence bearing on them. 
Pearson also correctly stated that “if an hypothesis 
is false, its reverse must be true,” i.e. that if we 
reject H0, we accept H1, at least when H1 is the 
standard composite alternative hypothesis of ∂ ≠ 
0. Where formal assessment of such additional 
hypotheses might be useful, there is an abundance 
of methodologies available (e.g., confidence inter-
vals, confidence curves, likelihood ratios, severity 
curves).

This was nothing but bluster between iras-
cible alpha males. Fisher was unclear and Pear-
son was nitpicking. Pearson must have known 
that Fisher’s “certainly true” was a slip of the 
pen (Fisher should have simply said, ‘supported 
strongly’) and that Fisher, like Pearson him-
self, generally used “hypothesis” only in the 
sense of null hypothesis (Inman 1994). The term 
“alternative hypothesis” had only recently been 
introduced (Neyman & Pearson 1933b), and was 
never accepted by Fisher — though he certainly 
accepted the hypothesis that µ1 ≠ µ2 every time 
he rejected the hypothesis that µ1 = µ2!

Modern reverberations and missteps

Fisher (1955a) waited twenty years to expand 

Table 1. Test of three null hypotheses concerning the 
difference between two treatments.

Treatment Values for m s
group response
 variable

A 13, 37, 23 24.33 12.06
B 19, 30, 41 30.00 11.00
Possible statistical tests
Test 1: H0: µA = µB,  H1 = µA ≠ µB
 t = 0.605, d.f. = 4, P = 0.58
Test 2: H0: µA = µB + 1,  H1 = µA ≠ µB + 1
 t = 0.498, d.f. = 4, P = 0.64
Test 3: H0: µA = µB – 1,  H1 = µA ≠ µB – 1
 t = 0.712, d.f. = 4, P = 0.52
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on and clarify his point, concluding “it is a 
fallacy, so well known as to be a standard 
[Fisher’s emphasis] example, to conclude from 
a test of significance that [if P is high] the null 
hypothesis is thereby established ….” Neyman 
(1956) attempted to rebut Fisher but mostly 
talked around the main point and concluded by 
pointing out that, well, Fisher himself had once 
committed the fallacy in the past!

While any good modern textbook warns 
against this fallacy, in other places confusion still 
reigns. Ziliak and McCloskey (2008: 69, 225) 
gratuitously attribute Fisher’s (1955a) remarks 
to his “studied ignorance of Type II error” and to 
“more despair … by a man losing status with the 
highbrows.” Throughout their book they make 
the assumption that significance tests are only 
used in the Neyman-Pearsonian manner where 
a high P value leads to ‘acceptance’ of the null 
or at least a favoring of it over the alterna-
tive hypothesis. That is why they accuse 94% 
of the 369 research articles published during 
1980–1999 in the American Economic Review 
of commiting the “error” of not giving explicit 
attention to the power of the tests carried out, 
and 70% of the “error” of not “examin[ing] 
the power function” (p. 81, 83). This left those 
articles supposedly “risking high levels of Type 
II error.” Yet that risk of Type II error has been 
and is non-existent for paleo- and neoFisherians.

In his otherwise fine text, Spanos (1999: 
690) briefly becomes very non-Fisherian when 
he switches from characterizing P as a measure 
of the plausibility of H0 to suggesting Fisher 
believed that a P value can also provide a mea-
sure of “the strength of evidence for … the null 
hypothesis.” Though in most of his text, Spanos 
seems to accept a neoFisherian paradigm, he 
gives a strange small table intended to demon-
strate a nuanced, non-dichotomous interpretation 
of the P scale. It is as follows: “P > 0.10 … strong 
support for H0; 0.05 < P < 0.10 … some support 
for H0; 0.02 < P < 0.05 … lack of support for H0; 
P < 0.01 … strong lack of support for H0.” Under 
neither the paleo- nor the neoFisherian paradigm 
is it logically possible for a P value to provide 
support, let alone “strong support,” for H0.

Spanos makes the same mistake in the exam-
ple he presents: an observed proportion, 0.48415, 
is tested for departure from H0: Θ = 0.4857. This 

yields a P = 0.617 leading him to conclude that 
“the evidence is strongly in favor of H0.” Yet the 
implicit H1: Θ ≠ 0.4857 also is highly plausible 
given this P value. And a point H1: Θ = 0.4849 
would yield a P > 0.617 and be seen as even more 
plausible than 0.4875 if it (0.4849) were to be set 
up as the null. (The small deviations involved in 
this example should not distract the reader; the 
same principle is demonstrable with larger ones). 
A. Spanos (pers. comm.) has indicated that the 
small table will be removed and these paradoxes 
resolved in the upcoming new edition of his book.

As many have acknowledged, acceptance 
of null hypotheses has often been driven by 
widespread misdefinition of P, the mistaken 
notion that it gives the probability that the null 
hypothesis is true — or something like that. 
A current glaring example is provided as an 
online “public service” by StatSoft (2007; Hill 
& Lewicki 2007): “The statistical significance of 
a result is the probability that the observed rela-
tionship (e.g., between variables) or a difference 
(e.g., between means) in a sample occurred by 
pure chance (‘luck of the draw’), and that in the 
population from which the sample was drawn, 
no such relationship or differences exist …. Spe-
cifically, the p-value represents the probability of 
error that is involved in accepting our observed 
result as valid, that is, as ‘representative of the 
population’. For example, a p-value of .05 (i.e., 
1/20) indicates that there is a 5% probability that 
the relation between the variables found in our 
sample is a ‘fluke’.”

But it gets worse. StatSoft (2007) boasts 
on their website (http://www.statsoft.com/text-
book/stathome.html) that their online manual “is 
the only internet resource on statistics recom-
mended by Encyclopedia Brittanica.” Never has 
it been so important to ‘Distrust Authority,’ as 
the bumper sticker says.

The missing example

A high P value is as consistent with H1 as with H0 
and is grounds only for indecision or suspension 
of judgment with respect to the truth of H0 (Fisher 
1925, Tukey 1960, 1991, Kalbfleisch & Sprott 
1976, Oakes 1986: 31, Abelson 1995, Cortina & 
Dunlap 1997, Harris 1997a, 1997b, Nickerson 
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2000, Tryon 2001, Lombardi & Hurlbert 2009). 
One is free to ‘accept’ H0 on grounds other than 
the test and resultant P value, but the high P value 
itself provides no grounds for preferring H0 over 
H1. Likewise, it is equally inappropriate to speak 
of a high P value as an argument for ‘retaining’ or 
‘failing to reject’ H0 and, implicitly or explicitly, 
‘rejecting’ H1. Both H0 and H1 must be viewed as 
being consistent with the data, and so both must 
be “retained,” both we must “fail to reject.”

An example may help. Table 1 presents a 
simple hypothetical data set for comparing two 
treatments. A standard t-test of H0: µA = µB yields 
a high P value (Test 1). Unthinking followers of 
the decision theoretic framework will accept, on 
this ground, the null hypothesis and conclude 
there is no difference between treatments.

That conclusion represents a logical error 
known as the fallacy of affirming the consequent 
as proof of the antecedent (e.g. Copi 1953: 251, 
Henkel 1976: 35, Ford 2000: 177): if A implies 
B, and B is observed, then A is — even though 
C, D, and E could also imply or explain B. In our 
example, A = no difference between treatments, 
B = high P value (usually), C = small effect size, 
D = high variances, and E = low treatment rep-
lication.

The fallacy becomes obvious if we carry out 
t-tests for the null hypotheses that µA is a little 
greater (Test 2) and a little smaller (Test 3) than 
µB. Both of these tests also yield high P values 
(Table 1). So, if a high P value constituted evi-
dence in favor of the null hypothesis, we would 
now have evidence that simultaneously favors 
three mutually contradictory conclusions regard-
ing the likely difference between µA and µB.

It is unfortunate that such examples are not 
given in textbooks as soon as the concept of 
significance testing is introduced. We know of 
no textbook that does so. On the other hand, the 
number of books (e.g., Marks 1982: 125, Oakes 
1986: 11 (contra p. 31!), Sokal & Rohlf 1995: 65, 
Underwood 1997: 17, Lang & Secic 1997: 65, 
Steel et al. 1997: 94, Gotelli & Ellison 2004: 96; 
Hawkins 2005: 84ff) and review articles (e.g., 
Rozeboom 1960, Morrison & Henkel 1970: 309, 
Elenbaas et al. 1983, Leventhal & Huynh 1996) 
that promulgate the fallacy is large. Frick (1995) 
noted four other statistics textbooks, out of 15 
examined, that promote it as well.

True parsimony

A particular notion of parsimony combined with 
the notion that one should not suspend judg-
ment and retain both H0 and H1 may sometimes 
underlie the confusion. For example, Gotelli and 
Ellison (2004: 91, 92, 96) cogently state that 
“absence of evidence is not evidence of absence; 
failure to reject a null hypothesis is not equiva-
lent to accepting a null hypothesis (although it is 
often treated that way).” However, in discussing 
an example, they later state, “scientists favor 
parsimonious or simple explanations over more 
complex ones. … [and] that differences in GC 
[glucocorticoid] levels between the two groups 
can be most parsimoniously attributed to random 
variation among individuals.” In other words, on 
the grounds of parsimony, they accept or retain 
only H0 and presumably would do so for any 
other statistical test yielding a high P. Yet no 
decision between H0 and H1 is required or can 
be logically justified. So true parsimony calls for 
retention of both H0 and H1.

Logic as “nihilism”

Perhaps thinking of the null hypothesis as a 
scientific hypothesis rather than just a part of 
the mechanics involved in obtaining a P value, 
some researchers feel it desirable to expand our 
conceptual frameworks so that acceptance of 
H0 can be a logically valid option, even without 
recurrence to information external to the data 
set being analyzed. Indeed, Neyman and Pear-
son (1933b:187, 195) early on expressed this 
impulse when they mused about establishing 
three options — accept H0, reject H0, remain in 
doubt — in their framework, and spoke of “prob-
lems … where [type II] errors can be divided 
into two classes — those which do not matter 
and those which do ….”

Among recent writers, Frick (1995) argues 
this position most strongly and explicitly. He 
labels as “nihilism” the idea that a statistical test 
can never lead to the favoring of H0 over H1. He 
posits that if, by six criteria he advocates, a study 
constitutes a “good effort” to detect an effect and 
comes up with a high P value, the conclusion 
should be that the effect is zero. In particular, he 
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hopes that “Perhaps psychology will eventually 
settle on one particular number [i.e. P value] that 
must be exceeded for the null hypothesis to be 
appropriately accepted. While a p value of less 
than .20 seems too low, a p value greater than 0.50 
seems large enough.” Just as he thinks α should 
be fixed at 0.05 for the field of psychology (Frick 
1996 and above), so he also would recommend 
a critical P value to be designated for allowing 
acceptance of null hypotheses in that field.

The argument will not convince many. It is, 
at least in part, a reaction to a perceived incor-
rigibility of his outlaw colleagues. Frick (1995) 
despairs that “On a practical level, never accept-
ing the null hypothesis is not a viable alternative. 
Although currently the opinion expressed most 
often is that the null hypothesis should never 
be accepted, the null hypothesis is, nonethe-
less, often accepted. Thus, the nihilistic posi-
tion seems to be unenforceable.” In fact, good 
scientists and statisticians for the better part of a 
century have found it quite “practical” to never 
accept null hypotheses.

Three-decision procedure

We are left, then, with what has been termed 
the “three-decision problem” (Lehmann 1950), 
“three-decision procedure” (Kaiser 1960) or 
“three-valued logic” (Harris 1997a). Its earli-
est explicit formulation was given by Bahadur 
(1952) who noted approvingly that “the manner 
in which the two-sided t-test is widely used in 
practice” entails either concluding there is an 
effect, with a particular sign, or “reserving judg-
ment.” Cox (1958) also gave an early formula-
tion of the idea, stating that “the significance 
test is concerned whether we can, from the data 
under analysis, claim a difference in the same 
direction as that observed … [or] whether the 
direction of any effects has been reasonably well 
established ….” The idea has been refined and 
recommended by Kaiser (1960), Tukey (1991), 
Abelson (1995), Harris (1997a, 1997b), Tryon 
(2001), and Cox (2006a).

In a two-group case, one examines the P 
value yielded by a significance test for a differ-
ence between groups and concludes one of three 
things: the difference between the true popula-

tion means seems to be negative, it seems to be 
positive, or it cannot confidently be stated to be 
either so judgment is reserved or suspended. We 
add here only one element — that the interpreta-
tion should be a shaded one made without refer-
ence to a specified α and without use of terms 
such as ‘significant’ and ‘non-significant’.

Hunter (1997) strongly disparaged this 
“three-valued” logic paradigm. He stated: 
“Harris [1997b] argues that the computations 
of the significance tests can be saved by using a 
radically different interpretation scheme. How-
ever, his scheme was put forward 35 years ago 
by Kaiser and was adopted by no one. So even 
though his new scheme would be an improve-
ment, we already know that it will not work in 
practice.” Kirk (2007) likewise claimed “the 
three-outcome test [has] … found little accep-
tance among researchers.”

These statement seem naive. Harris (1997a) 
is certainly correct when he states, “To their 
credit, most researchers and textbook authors 
actually follow three-valued logic.” This indeed 
is the logic fully implicit in Fisher’s original 
conception of null hypothesis testing and explicit 
in writings of early neoFisherians such as Baha-
dur (1952) and Cox (1958). It seems to have 
been the quiet guide of all those who have used 
significance tests with understanding of their 
actual properties and limitations. That is why 
Harris (1997b) can say, with full justification, 
that “Adopting three-valued hypothesis-testing 
logic would require no changes in the conduct 
of scientifically appropriate research, but only 
changes in the way we describe the underly-
ing logic of NHST [null hypothesis significance 
testing] in textbooks, to our colleagues, and to 
ourselves.”

Three-valued logic is thus an important ele-
ment in the neoFisherian paradigm, a happily 
positive inheritance from its paleoFisherian pro-
genitor. We modify it only by not requiring 
specification of an α, thus making the trichotomy 
a fuzzy one rather than a rigid one.

Hybrids and reformulations

There have been several attempts to ajudicate 
the historic conflict between the Fisherian and 
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Neyman-Pearsonian theories of statistical tests. 
Three are worth comment here. They all move 
in the direction of our conception of the neoFish-
erian paradigm without quite getting there.

Lehmann’s unified theory

E. L. Lehmann (1993), one of Neyman’s early 
doctoral students and author of the definitive 
treatise on Neyman-Pearson methods (Lehmann 
1959, Lehmann & Romano 2005), suggests “the 
two theories are complementary rather than con-
tradictory and that a unified approach is possible 
that combines the best features of both.” Which 
might be more appropriate will vary according 
to the context or frame of reference of a study. 
Lehmann suggests “one should routinely report 
the p value and, where desired, combine this 
with a statement on significance at any stated 
[α] level.” The later requirement would seem, in 
any circumstance, to be superfluous. Specifica-
tion of α is said to be sometimes needed because 
“definite decisions … are often required” or 
because “some statisticians (and journal editors) 
see an advantage in standardization.” No exam-
ples from research contexts are given where 
“definite decisions” would be needed. Neither 
reason seems compelling, nor does Lehmann 
explicitly indicate how values of P ≥ α would be 
interpreted under his unified theory.

Chow’s defense of the hybrid

Chow (1996) gives a strong defense of sig-
nificance tests and P values. He considers at 
length the criticisms leveled against significance 
tests, shows that many are irrelevant or in error, 
and additionally offers an extended critique of 
Bayesian methods. Chow may be unique, how-
ever, in that the paradigm he chooses to defend is 
specifically the paleoFisherian-Neyman-Pearso-
nian hybrid. In response to Gigerenzer’s (1993) 
claim that NHST is “burdened with conceptual 
confusion,” Chow responds (p. 24) that “the 
hybridism is not necessarily problematic. It is 
detrimental to research rigour only if it is estab-
lished that either the [paleo]Fisherian or the 
Neyman-Pearson approach has to be adopted 

in its entirety. Moreover, it has to be assumed 
that either the Fisherian or the Neyman-Pearson 
treatment is adequate by itself for the task.”

Thus Chow (1996) advocates fixing α, talk-
ing about ‘significant’ differences, and ‘accept-
ing H0’. But he is also comfortable with simul-
taneously reporting exact P values or even using 
notation such as ‘< 0.05,’ ‘< 0.01’, and ‘< 0.001’, 
knowing some will interpret such notation to 
imply having established a priori α values of 
0.05, 0.01, or 0.001. Chow’s objections (p. 38) 
to the neoFisherian paradigm would seem to 
be weak: α must be fixed, preferably at 0.05, 
because that is at least fuzzily “meaningful and 
objective at the mathematical level” and it gives 
us an unambiguous “decision criterion.” Use of 
the latter criterion might save some editors and 
readers some strain on the brain, as discussed, 
but otherwise has no redeeming value. In sum, 
Chow’s arguments on this point seem to be pri-
marily a rhetorical exercise designed to justify 
continued use of the word ‘significant’.

Mayo’s reformulation and severity 
paradigm

In a wide-ranging and primarily philosophical 
treatise, Mayo (1996) synthesized a project she 
began in the 1980s to develop more “ratio-
nal methods of hypothesis appraisal, … more 
adequate methods of inductive inference” (p. 
ix). She rejects “the global inductive approaches 
… so attractive to philosophers” and comes up 
with “a model of experimental [i.e. empirical] 
learning that is more of a piecemeal approach, 
whereby one question may be asked at a time in 
carrying out, modeling, and interpreting experi-
ments [i.e. empirical research generally] …” 
(p. xi). At the core of this paradigm is “a refor-
mulation of standard Neyman-Pearson statistics 
that avoid[s] the common misinterpretations and 
seem[s] to reflect the way those methods are 
used in practice” (p. x). This reformulation she 
labels error-probability statistics or just error 
statistics. Mayo (1997, 2005), Mayo and Cox 
(2006), Mayo and Spanos (2006, 2009) give 
briefer, up-to-date summaries of her ideas.

At the core of Mayo’s philosophy and error 
statistics is the notion that before a hypothesis, 
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statistical or scientific, can be accepted it must 
be subjected to, and pass, a severe test. In the 
context of significance tests, the idea is that 
severity of an inference concerning H1 can be 
quantified as (1 – P), the P value being that from 
a one-tailed test. Severity also can be calculated 
via additional one-tailed tests for a series of 
hypothetical discrepancies or effect sizes, that is 
for inferences more specific than ∂ ≠ 0, such as 
H1: ∂ < g (which would be tested against H0: ∂ 
≥ g) or H1: ∂ > g (which would be tested against 
H0: ∂ ≤ g). One can specify an α in order to have 
a criterion for which inferences do or don’t pass 
with ‘high severity’ defined as 1 – α. One can 
also calculate and plot a severity curve (g versus 
1 – P), without defining an arbitrary boundary 
between ‘high’ and ‘low’ severity, just as a good 
neoFisherian abandons the arbitrary distinction 
between ‘significant’ and ‘non-significant’ dif-
ferences, can use a confidence band instead of 
a confidence interval, and can do power analy-
ses without depending on a single fixed alpha. 
Mayo considers severity analyses to be indis-
pensable to preventing fallacious interpretations 
of P values, especially low ones.

We attempt no full elucidation of severity 
analysis here, which would require graphical 
representations and detailed examples. Exactly 
in what types of situations such additional appa-
ratus might be both needed and feasible will be 
a subjective matter. Severity analysis can help 
discourage fallacious interpretations of P values, 
although, in our own experience, it is not essen-
tial to that end. Manuscripts presenting large 
numbers of significance tests will be greatly 
lengthened if a severity analysis is presented for 
each one. If severity analyses are not essential 
to a researcher’s objectives, they may be viewed 
with skepticism by reviewers and editors.

In his review of her book, Lehmann (1987) 
noted that Mayo’s views seemed closer to those 
of Fisher than those of Neyman and Pearson. 
Though much of her recent work has been in 
collaboration with apparent neoFisherians such 
as D. R. Cox and A. Spanos, even her recent 
works (e.g. Mayo 2005, Mayo & Spanos 2006) 
use much of the terminology, sometimes with 
redefinitions, of the Neyman-Pearsonian frame-
work, and she continues to view her work as a 
“reformulation” or extension of the Neyman-

Pearson paradigm rather than a replacement of 
that paradigm with a neoFisherian one. Mayo 
patiently critiqued error-ridden early versions of 
this section, and somewhat agrees (pers. comm.) 
with the neoFisherian paradigm as far as we 
have taken it, but she also regards our version of 
the paradigm as minimalist and incomplete.

Misdirected critiques

Statistical methodologies have been misinter-
preted and misused on a large scale throughout 
their history. Not surprisingly this has stimu-
lated critiques of statistical malpractice on many 
issues and in many disciplines. Within this 
corpus of statistical criticism, however, there 
has been much chastisement of scientists and 
statisticians for statistical crimes not committed, 
and much repetition of old erroneous claims. 
Indeed, the error rate in the literature of statisti-
cal criticism may well be as high as that in the 
disciplinary literatures that the critiques review. 
In the present context, this applies to many of the 
claims that P values are used too much and effect 
sizes and confidence intervals too little. It also 
applies to attacks by Bayesians who, oblivious to 
their main intended use, argue for getting rid of 
significance tests altogether. Arguments on these 
matters have affected the issue of one-tailed tests 
mostly indirectly, by creating a great deal of 
‘noise’ in the larger debating arena.

Overemphasis on P values?

Most of the time investigators know or suspect 
on both evidentiary and logical grounds that 
a Type I error is not likely: there are strong a 
priori grounds for believing that ∂ ≠ 0 (e.g. 
Savage 1957, Nunnally 1960, Tukey 1960, 1991, 
Smith 1962, Meehl 1967, Carver 1978, Oakes 
1986:39, Cohen 1990, 1994, Chow 1996, John-
son 1999, Stoehr 1999, Anderson et al. 2000, 
Quinn & Keough 2002: 53). Our main focus then 
should be on description or estimation rather 
than on hypothesis-testing, e.g., on estimating ∂ 
(or other measures of effect size) with sufficient 
precision and not merely on testing whether ∂ = 
0. Yates (1951) long ago noted that “the empha-
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sis given to formal tests of significance through-
out [Fishers’s] Statistical Methods, and to a 
great extent also in The Design of Experiments 
… has caused scientific research workers to 
pay undue attention to the results of the tests of 
significance … and too little to the magnitude of 
the effects they are investigating.” This situation 
persists in many disciplines half a century later 
and has been widely decried, most recently and 
vehemently — and confusingly — by Ziliak and 
McCloskey (2008). The confusions, inaccuracies 
and polemics in that book distract from its main 
message, however; these have been partially 
catalogued by Hoover and Siegler (2008) and 
Spanos (2008).

This situation in no way constitutes an argu-
ment against testing null hypotheses of the form 
H0: ∂ = 0. As Quinn and Keough (2002) nicely 
state, in the great majority of situations, a “rejec-
tion of the H0 is not important because we 
thought the H0 might be true. It is important 
because it indicates that we have detected an 
effect worth reporting and investigating further.” 
Others have emphasized the same point (Chow 
1996, Eberhardt 2003, Stephens et al. 2005). 
Those many who have disparaged significance 
testing on the ground that the standard ‘nil’ null 
is “silly,” “meaningless,” “vacuous,” “implau-
sible,” “obviously false,” or “nonsensical” are 
only reflecting profound confusion about the 
function of significance tests and the H0.

Complaining of an overemphasis on P values 
by researchers, many critics (e.g. Rozeboom 
1960, 1997, Carver 1978, 1993, Guttman 1985, 
Oakes 1986, Shaver 1993, Cohen 1994, Falk & 
Greenbaum 1995, Schmidt 1996, Hunter 1997, 
Schmidt & Hunter 1997, Royall 1997, Nix & 
Barnette 1998, Johnson 1999, Anderson et al. 
2000, Nicholls 2001, Kline 2004, Fidler et al. 
2006, Wagenmakers 2007, Lukacs et al. 2007, 
McCarthy 2007, Ziliak & McCloskey 2008, 
Cumming & Fidler 2009) have recommended 
doing away with significance testing and report-
ing of P values altogether or at least in most situ-
ations. We even find occasional premature ‘obit-
uaries’ that claim “the traditional null-hypoth-
esis procedure has already been superseded in 
modern statistical theory by a variety of more 
satisfactory inferential techniques” (Rozeboom 
1960) or that make reference to “the collapse of 

null hypothesis significance testing as a statisti-
cal paradigm” (Guthery et al. 2001). With few 
exceptions, however, the complaints of such 
critics concern the misuse and misinterpretation 
of significance tests and P values by investiga-
tors and not the inherent properties, under the 
neoFisherian paradigm, of the tests or P values 
themselves. Individual scientists and statisticians 
have been at fault, not the methodology. The 
critiques are themselves often full of exaggera-
tions and logical and factual errors, as has been 
abundantly documented (e.g. McGinnis 1958, 
Abelson 1995, 1997, Chow 1996, Mayo 1996, 
Cortina & Dunlap 1997, Estes 1997, Hagen 
1997, 1998, Mulaik et al. 1997, Reichardt & 
Golub 1997, Rossi 1997, Levin 1998b, MacLean 
& Ernest 1998, Nickerson 2000, Balluerka et 
al. 2005, Harris 2005, Boruch 2007, Hoover & 
Siegler 2008, Spanos 2008).

The strong attack by Ziliak and McCloskey 
(2008: 2) on P values and signficance tests starts 
off on an even keel with words of wisdom: “sta-
tistical significance, or lack of it … is on its own 
almost valueless … [it] should be a tiny part of 
an inquiry concerned with the size and impor-
tance of relationships.” Who could disagree? 
In a report on an aquatic microcosm experi-
ment, Greenwald and Hurlbert (1993) dedicate 
23% of the article to graphical representation of 
effect sizes, report 303 P values in the graphs 
themselves (thus taking up no extra space), and 
present and discuss the results with no mention 
of ‘statistical significance’. Or consider Hart et 
al. (1998) where 22% of the paper is given over 
to graphical representations of effect sizes, P 
values in abundance are unobtrusively included 
within the graphs, and there is nary a mention of 
‘statistical significance.”

Unfortunately, Ziliak and McCloskey quickly 
get carried away with their own wittiness, neolo-
gisms, and iconoclastic fever, producing over-
blown rhetoric and many inaccuracies about 
history and statistics. “Statistical significance” 
is characterized as an “error” (p. xvi) and “a phi-
losophy of mere existence” (p. 7). It is “a view 
from nowhere … about precisely nothing” (p. 
9), and “always a false start” (p. 15), a “muta-
tion” (p. 22), and a sign of “phoniness” (p. 25). 
A significance test procedure that does not allow 
acceptance of the null hypothesis and that is 
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unaccompanied by a power analysis is said to be 
“meaningless, no better than a table of random 
numbers” (p. 9). And all this before Chapter 2! 
Later on, their rhetorical momentum drives them 
to claim that “Statistical significance is hurting 
people, indeed killing them” (p. 186). Ziliak and 
McCloskey simply cannot envisage the possibil-
ity of a simple neoFisherian approach like that 
reflected in Greenwald and Hurlbert (1993), Hart 
et al. (1998) or other papers cited earlier.

Hagen (1997) has perhaps put it best: “The 
logic of the NHST [null hypothesis significance 
test] is elegant, extraordinarily creative, and 
deeply embedded in our methods of statistical 
inference. It is unlikely that we will ever be 
able to divorce ourselves from that logic even 
if someday we decide that we want to. … the 
NHST has been misintepreted and misused for 
decades. This is our fault, not the fault of the 
NHST.”

We presume, of course, that the “logic” 
Hagen refers to is that of the neoFisherian para-
digm!

Neglect of effect sizes?

Some modern critics, echoing Yates (1951), 
have charged that excessive focus on P values 
and “statistical significance” has caused many 
researchers to even forego presentation of means 
or effect sizes. Guttman (1985) claimed that “[i]
t is rather typical [of the use] of analysis of vari-
ance that … the actual means are not published.” 
Of 163 articles in the Journal of Consulting and 
Clinical Psychology, Dar et al. (1994) reported 
that a few reported “differences in proportions or 
means” but that “no measures of effect size (i.e., 
eta or omega squared or other measures of the 
percent of variance accounted for by the indepen-
dent variables) were ever reported in the context 
of an ANOVA.” With editorial ‘encouragement’ 
(Kendall 1997), the percentage of articles in that 
journal reporting standardized effect sizes rose 
to 20 by 1993 and to 46 by 2000–2001 (Fidler 
et al. 2005a). On the other hand, of 704 articles 
published between 1982 and 2000 in Ameri-
can Journal of Public Health or Epidemiology, 
essentially all reported effect sizes, yet none 
used “effect sizes in standard-deviation units” 

(Fidler et al. 2004a). Vacha-Haase et al. (2000) 
determined that only 49% of 1995–1997 articles 
using significance tests in Psychology and Aging 
and Journal of Counseling Psychology reported 
effect sizes. They also summarized results of 
nine other studies of psychology journals that 
found frequency of effect size reporting in the 
1990s to range from 10% to 88%. For 95 articles 
in the Journal of Wildlife Management, Ander-
son et al. (2000) stated that “Approximately 
47% … of the P-values … appeared alone, with-
out estimated means, differences, effect sizes, 
or associated measures of precision.” Graham 
and Edwards (2001) examined 184 articles that 
used ANOVA in four major ecological journals 
published in 1998. They claimed that only two 
of these articles provided information on effect 
sizes and that “[w]hen using ANOVA to interpret 
results of ecological experiments, most ecolo-
gists have simply reported P values as evidence 
of, or lack thereof, the biological importance 
of some factor...on a response variable ….” 
However we examined just the first 10 papers in 
their set of 184 (those in the first 1998 issue of 
Ecology) and found that at least 9 presented clear 
information on effect sizes in their tables and 
figures, most often via group or treatment means. 
When simple linear regression was also used in 
some of these papers, slopes of regression lines 
were given. Expressing how much change in Y is 
produced or expected per unit change in X, those 
slopes are effect size measures of primary inter-
est to ecologists.

The real complaint of most of these critics 
is that many, perhaps most, scientists usually do 
not calculate and present the standardized mea-
sures of effect size so popular with power and 
meta-analysis aficionados over the last decades. 
These measures include those such as r2, d/s, 
ω2, η2 and so on, which represent the predictive 
value of an independent variable or the per-
centage of total variance explained by it in the 
particular study. With the exception of r2 these 
measures are indeed usually left uncalculated 
by researchers, because they rarely are useful to 
clear interpretation of direct measures of effect 
size (e.g. d, percent change, slope of a regres-
sion line, etc.) and the phenomena they bear on. 
A major value of standardized effect size mea-
sures is often said to be their indispensability for 
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meta-analyses. Yet routine use of measures of 
predictive value as measures of effect size has 
massively compromised the meta-analysis litera-
ture as many have pointed out (e.g. Oakes 1986: 
49ff, 156ff, Hurlbert 1994, Abelson 1995, 1997, 
Osenberg et al. 1997, 1999, Petraitis 1998). For-
tunately, warnings of their inappropriateness and 
potential for misuse are on the increase (Green-
land 1998, Levin 1998a, Wilkinson & TFSI 
1999, Lenth 2001, Jacard & Guilano-Ramos 
2002, Fidler 2002, Di Stefano 2004, Rutledge & 
Loh 2004, Balluerka et al. 2005, Nakagawa & 
Cuthill 2007, and R. J. Harris, G. Loftus, K. R. 
Rothman & P. E. Shrout — all pers. comm. to 
Fidler 2002). Unfortunately, the APA (2001: 25) 
publication manual and some recent authors (e.g. 
Kline 2004, Levine et al. 2008b) imply that only 
standardized measures of effect size are legiti-
mate or useful.

Response variables are sometimes defined 
and measured on artificial or abstract scales. In 
some disciplines such as animal behavior, psy-
chology and education, this is very common. 
Effect sizes expressed as absolute increments 
or decrements or as percent change along such 
scales can be difficult to interpret and relate to 
the phenomena under study. Nevertheless, even 
in such situations conversion of those simple 
types of effect sizes to standardized ones makes 
their interpretation less clear, not more clear, 
even if such conversion can confer a superficial 
mathematical elegance on poorly conceived and 
conducted meta-analyses.

Ziliak and McCloskey (2008) argue that 
Fisher drove many sciences to such an obsessive 
focus on statistical significance that scientists on 
a massive scale gave up considering the size and 
importance of effects in their research reports, 
costing us “jobs, justice, and lives.” Throughout 
their book they rail against “sizeless scientists”, 
“sizeless sciences”, and the “sizeless stare of sig-
nificance tests.” They refer to some of the arti-
cles we cite above, and they do analyze in detail 
several case studies where indeed an obsession 
with P values produced misguided statistical 
analyses and naïve and damaging interpretation. 
However, in their own scrutiny of 369 papers in 
the American Economic Review (1980–1999) 
they do not claim to have found a single paper 
that omitted information on effect size, much the 

same result as obtained by Fidler et al. (2004a). 
They do complain that ca. 20%–40% of the 
papers do not “discuss” or “interpret” the effect 
sizes they document.

Thus, we consider the allegations of mas-
sive underreporting of effect sizes in the natural, 
behavioral and social sciences to be unfounded. 
If indeed the matter were more than a ‘tempest 
in a teapot’, then it would signal a massive, col-
lective, intellectual failure on the part of editors 
and referees as well as researchers. Consider a 
simple experiment involving a control treatment 
and an experimental one. It seems difficult to 
imagine that a serious researcher would ever 
prepare, or an editor ever accept, a report on 
that study that did not give, in tables, figures or 
text, the relevant response variable means for the 
two treatments. If that is done, rarely will any 
standardized effect size calculations be useful, 
though other supplementary statistics may be, 
such as confidence intervals, expression of effect 
as percent change, and so on.

Whether the importance or substantive sig-
nificance of effect sizes is sufficiently discussed 
in a paper is a separate matter and one involving 
more subjective judgment. Lack of careful inter-
pretation can be a serious problem, as Zilak and 
McCloskey (2008), among others, emphasize. 
They suggest that ca. 20%–40% of the Ameri-
cian Economic Review papers they examined do 
not “discuss” or “interpret” their effect sizes at 
all. They suggest the problem is equally severe 
in other disciplines, but quantitative data on that 
point are lacking.

More controversial is the claim by Ziliak 
and McCloskey (2008) that it was Fisher who 
encouraged everyone to focus on P values and 
forget effect size and importance. They do not 
make their case. Fisher presented information 
on effect size in every paper he ever wrote that 
contained real or hypothetical data sets. Ziliak 
and McCloskey’s complaint that “he rarely men-
tioned [our emphasis] magnitudes — such as 
the size and meaning of correlation coefficients” 
(p. 224) — is irrelevant. And their complaint that 
Fisher recommended we “should not care about 
the size of experimentally determined death rates 
or the loss of life in treatment and control 
groups” (p. 225) is simply vicious and unsup-
ported.
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If Fisher did not assess the ‘importance’ of 
effect sizes in the data sets he dealt with, surely 
it was for the same reason writers of statis-
tics books neglect ‘importance’ in discussing 
examples they use: it is not appropriate or nec-
essary to their instructional objectives. Cogent 
assessments of ‘importance’ are primarily the 
responsibility of the subject matter specialists, 
not of the statisticians who may advise them. 
Moreover, even a subject matter specialist will 
have limited ability — and space! — to spell out 
all the many ways in which a given finding may 
be ‘important’ to other problems and disciplines 
or to society at large. Presentation of effect sizes 
in a clear way that facilitates independent evalu-
ation by others should be the first objective.

Confidence intervals imperative?

Significance tests represent only a small early 
step in extracting the information in a data set. 
Various additional information-extracting statis-
tical procedures can be carried out prior to final, 
more subjective assessment of the import of 
findings for the phenomena under study. These 
procedures are so numerous and their utility 
so context specific, no careful review or com-
parison of them can be attempted here. Two of 
the oldest are confidence intervals and power 
analyses; two of the newest are confidence bands 
and severity curves. In focusing primarily on 
confidence intervals, this section is not arguing 
for their superiority over other procedures but 
only contesting those who have argued that con-
fidence intervals render significance tests super-
fluous.

Basic considerations

One common reaction to misuse of P values 
has been the recommendation that instead of 
presenting them we present the two-sided con-
fidence interval about parameter estimates, as 
first proposed by Neyman (1937). This of course 
requires the same largely arbitrary specification 
of an α as is required in the Neyman-Pearson 
decision theoretic framework by the test of H0. 
Observation of whether the confidence interval 

does or does not include the value zero (or c) 
does in fact constitute a test of H0: ∂ = 0. One 
does not have to use this overlap criterion in a 
‘hard’ way: degree of acceptance of H1 can be 
modulated according to the degree to which the 
confidence interval overlaps or is distant from 
zero (e.g. Grant 1962, Cumming & Finch 2005).

So many have been so happy for so long 
with the 95% confidence interval, we are apt 
to neglect its arbitrary nature in this situation. 
There never was, of course, any requirement 
that the α selected for the test of H0 by an 
(unenlightened paleoFisherian or Neyman-Pear-
sonian!) investigator be the same as the α used 
in calculating a confidence interval. They could, 
for example, carry out significance tests with 
α = 0.05 while calculating a 90%, 80% or 75% 
confidence interval by setting α = 0.10, 0.20 
or 0.25. We are sympathetic to Cohen’s (1990) 
suggestion that “our interests are often better 
served by more tolerant 80% intervals.” In many 
situations, especially where temporal trends in 
a response variable are being shown graphi-
cally for two or more groups or treatments, the 
shorter confidence interval obtained with an α > 
0.05 will improve figure clarity. This is also why 
many authors reasonably elect to show standard 
error bars around their means rather than the tra-
ditional 95% confidence intervals.

One valuable function of confidence intervals 
is the provision of “humility” as they usually are 
wide (Harris 1997b). This suggests the option 
of calibration to personal psychological need. 
During years when things are going badly in the 
lab, the researcher can seek the solace of 80% 
confidence intervals. To moderate hubris during 
good times, 99% confidence intervals could be 
used.

Emil Spjotvoll (p. 65 in Cox 1977) was one 
of the first to contest the idea that confidence 
intervals are more useful and informative than 
tests. He stated, “My feeling is that they contain 
different kinds of information. When working 
with confidence intervals we use a fixed confi-
dence level and hence we do not have the flex-
ibility that [the exact P] gives us in measuring 
inconsistency with a given hypothesis. We could, 
of course, write up the intervals corresponding to 
a number of levels or finding [sic] ways of rep-
resenting this graphically, but I believe this will 
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probably be more confusing than illuminating.” 
Many others have also opined that confidence 
intervals complement significance tests and P 
values and cannot serve as replacements for 
them (e.g. Frick 1995, Cortina & Dunlap 1997, 
Levin 1998b, McLean & Ernest 1998, Harris 
2005). Presentation of multiple confidence inter-
vals for individual estimates does have its cham-
pions and might sometimes be useful with very 
simple data sets. Rozeboom (1960) suggested 
that reports might with “some benefit … simul-
taneously present several confidence intervals 
for the parameter being estimated.” Salsburg 
(1985) proposed using 50%, 80%, and 99% 
confidence intervals simultaneously in clinical 
studies. Mayo and Cox (2006) state that “the 
provision of confidence intervals, in principle 
at a range of probability levels, gives the most 
productive frequentist analysis.”

Appraisal of the value of confidence intervals 
must also consider that, in most studies, their 
width will have little bearing on interpretation of 
the effects demonstrated. So long as the associ-
ated P value is low, we conclude that an effect of 
some particular sign and approximate magnitude 
has been demonstrated. In studies testing broad 
theory or extraordinary claims (e.g. of telepathic 
ability), confident knowledge of the existence 
and sign of an effect is sometimes the sole objec-
tive. In those cases, a low P value by itself may 
provide sufficient confirmatory documentation 
(Frick 1996, Chow 1996, Abelson 1997, Bal-
luerka et al. 2005). In most other types of studies 
in both basic and applied research, the magni-
tude of the effect is also of direct interest. But 
only in some fraction of these will routine calcu-
lation of confidence intervals be useful.

The width of the confidence interval usually 
contains no information on the phenomenon 
being investigated nor does it aid assessment of 
the external validity of a finding, the degree to 
which it is generalizable to other and/or larger 
contexts or systems. The width is an artifact 
of study design protocols, in particular, in the 
case of an experiment, the number of experi-
mental units employed and the steps taken to 
achieve some degree of homogeneity among 
those units. In some contexts, such as clinical 
medical research, it is highly desirable to exam-
ine variability of response among experimental 

units (usually patients) in order to understand 
its possible relation to stratification factors (e.g., 
age, sex, race) and implications for clinical prac-
tice. In such contexts, the more useful sorts of 
confidence intervals might be ones that express 
the variability of response, not the precision 
with which mean response is estimated (Salsburg 
1989, 1992, Yancey 1996).

The crusade

The largely self-evident facts summarized above 
are much at odds with an almost religious cru-
sade that began some decades ago to demand 
that authors greatly increase the reporting of 
confidence intervals in research papers and 
greatly decrease the reporting of P values. The 
fields of medicine and psychology have been the 
main arena for this debate. Recent papers by F. 
Fidler and her colleagues (Fidler 2002, Fidler et 
al. 2004a, 2004b, 2005a, 2005b, 2006, Cumming 
et al. 2007) give an excellent overview of the 
crusade, albeit from the point of view of the cur-
rent crusade leaders themselves. They also col-
lectively offer a full bibliography on the topic.

Following accumulation of a small arsenal 
of critiques in the literature, a few editors led 
the charge. In 1977 under the influence of K. R. 
Rothman, the New England Journal of Medicine 
began strongly urging more use of confidence 
intervals and decreased reporting of P values. 
When he became assistant editor of the Ameri-
can Journal of Public Health in 1983 and found-
ing editor of Epidemiology in 1990, he became 
more demanding in these matters, sometimes 
advising authors, “All references to statistical 
hypothesis testing and statistical significance 
should be removed from papers. I ask that you 
delete p values as well as comments about sta-
tistical significance” (as quoted by Fidler et al. 
2004b). On the basis of writings by D. G. Altman 
and S. Gore, The British Medical Journal by 
1986 was recommending use of confidence 
intervals in place of P values. Perhaps by 1988, 
the infidels had rallied, and the tide had turned in 
favor of moderation and balance. By that year, 
“over 300 medical and biomedical journals had 
notified the International Committee of Medical 
Journal Editors (ICMJE) of their willingness to 
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comply with the [ICMJE] guidelines for publica-
tion” (Fidler et al. 2004b). The current version of 
those guidelines states, “When possible, quan-
tify findings and present them with appropriate 
indicators of measurement error or uncertainty 
(such as confidence intervals). Avoid relying 
solely on statistical hypothesis testing, such as 
use of P values, which fails to convey important 
information about effect size” (ICMJE 2007: 
35). Fine advice, but isn’t it what good scientists 
and good statisticians have been doing for more 
than half a century? In his review of this debate, 
Walter (1995) noted that authors in epidemiol-
ogy now appropriately use both techniques and 
warned about the setting of overly rigid editorial 
policy on such matters. Though aimed primarily 
at medical researchers, Altman et al. (2000) is an 
excellent guide to the calculation of confidence 
intervals for a variety of types of data.

In psychology a somewhat similar trajec-
tory has been followed by editors and edito-
rial boards, and this is well reviewed in Fidler 
(2002), Fidler et al. (2004b, 2005a, 2005b) and 
Cumming et al. (2007). Though the crusade in 
psychology at the editorial level got a later start 
than had that in medicine, it has been conducted 
with greater vehemence. Irresponsible hyper-
bole such as “the use of statistical significance 
testing in the analysis of research data has been 
thoroughly discredited … [it] retards the growth 
of knowledge; it never makes a positive contri-
bution … instead use confidence intervals and 
point estimates …” (Schmidt & Hunter 1997) 
has abounded in the psychological literature 
for decades. Ecologists, unfortunately, are now 
being encouraged to join this crusade (Johnson 
1999, Di Stefano 2004, Fidler et al. 2004b, 
Fidler et al. 2006).

The more aggressive crusaders for “reform” 
in psychology have advocated doing it by revis-
ing the influential APA Publication Manual to 
make it more rigidly prescriptive on statistical 
matters. The recommendations of a task force 
(Wilkinson & TFSI 1999) formed to suggest 
changes in the manual did not satisfy some 
reformers (Fidler 2002 and persons quoted 
therein). Those recommendations did state 
bluntly and without qualification that, “Inter-
val estimates should be given for any effect 
sizes involving principal outcomes,” but they 

did not forbid, or even discourage, use of sig-
nificance tests. The Statistics Task Force that 
revised the manual itself retained broad-minded, 
non-dictatorial statements about both signifi-
cance tests and confidence intervals. The manual 
(APA 2001: 22) only says the latter “can be an 
extremely effective way of reporting results … 
[and are] therefore strongly recommended.”

Clutter versus clarity

When editors have taken hard stands for or 
against particular statistical practices, authors 
not surprisingly have changed their behavior. 
Recommendations against reporting P values 
and in favor of reporting confidence intervals 
have had definite, sometimes large effects in 
the direction desired by editors (e.g. Fidler et 
al. 2004a, 2005a, 2006, Cumming et al. 2007). 
Those changes invariably have been labelled as 
positive “reform” by the crusaders. Yet no logic 
can justify tallying as a positive act every use of 
confidence intervals or tallying as a negative act 
every use of a significance tests. So before we 
could label the documented changes in statisti-
cal practice a positive “reform”, the difficult task 
would have to be carried out of assessing how 
each statistical decision in a large set of arti-
cles contributed to the clarity and cogency with 
which the substantive findings of the research 
are presented. No one has done this yet, and 
probably nobody wants to!

Fidler et al.’s (2006) analysis of statistical 
practices in the journals Conservation Biology, 
Ecology, and Journal of Ecology is an excellent 
case in point. In three tables, they present the 
frequency in these journals of a large number 
of statistical practices, both ‘good’ and ‘bad’. 
For each of the 64 frequencies reported, its 95% 
confidence interval is also reported, an act all 
bona fide crusaders would applaud. Neither indi-
vidually nor collectively are these confidence 
intervals interpreted by Fidler et al. in any way, 
however. They serve no function. Their com-
plete excision from the article would require 
no change in text or conclusions, and would 
permit a large reduction in sizes of the tables. Yet 
these authors castigate other researchers for the 
same failure. After making favorable comment 
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on increased use of confidence intervals in Epi-
demiology and the American Journal of Public 
Health, Fidler et al. (2004a) complained that, “In 
both journals, however, when CIs were reported, 
they were rarely used to interpret results or com-
ment on precision. This rather ominous [our 
emphasis] finding holds even for the most recent 
years we surveyed.”

Research projects vary greatly in size, scope 
and complexity, as do the articles reporting them. 
In many type of articles, no confidence intervals 
will be wanted or needed; they were used, for 
example, in only one of the eleven, effect size-
focused, ecological papers cited at the beginning 
of this article. In other studies, their sparing 
use will be sufficient, and in yet others they 
might be useful for every effect size estimated. 
Where large numbers of frequencies, means, 
effect sizes, and other statistics are reported, 
confidence intervals will often add only clutter, 
just as they do in Fidler et al. (2006), not clarity 
and cogency. Rote use of confidence intervals 
will thus contravene the wise advice in the APA 
(2001) publication manual to always seek the 
“minimally sufficient analysis”, as well as the 
advice of the Ecological Society of America to 
authors that, “The purpose of statistical analy-
sis is to increase the conciseness, clarity and 
objectivity with which results are presented and 
interpreted, and where an analysis does not serve 
those ends it probably is inappropriate” (ESA 
2006).

The more zealous advocates of abandon-
ing explicit significance tests and the reporting 
of P values in favor of reporting of confidence 
limits exclusively usually have a narrow frame 
of reference, that of small experiments or stud-
ies - those involving few treatments and only one 
or a few response variables or monitoring dates. 
In many disciplines large numbers of response 
variables and monitoring dates can result in tens 
or hundreds of comparisons among treatments 
being of interest. While P values for all such 
comparisons usually can be reported without 
causing large increase in size and complexity 
of tables, figures, or text, the same would not 
be true for confidence intervals. Even in small 
studies where the number of implicit or explicit 
comparisons is limited, often more useful than 
the standard confidence intervals will be Tryon’s 

(2001) inferential confidence intervals, which 
are calculated in such a way that whether or not 
two intervals overlap corresponds to whether 
or not a test for a difference between the two 
means will yield P > α or P < α. This proce-
dure is approximately equivalent to calculat-
ing a confidence interval about the difference 
between the means and observing whether it 
includes zero. When there is need for additional 
“worrying the bone” of data sets, one can calcu-
late other adjunct measures such as counternulls 
(Rosenthal & Rubin 1994), confidence distri-
butions (Poole 1987, Schweder & Hjort 2002, 
Schweder 2003, Bender et al. 2005), probabili-
ties of replication (Krueger 2001, Killeen 2005) 
or severity curves (Mayo 2005, Mayo & Spanos 
2006). These can help illuminate the meaning of 
P values thus discouraging their misinterpreta-
tion and providing complementary perspectives. 
Coverage of them even in introductory statistics 
courses would be salutary even if their actual use 
will not be needed very often.

Fiona Fidler (pers. comm.) kindly critiqued 
this manuscript for us and offers that we agree 
on most major points. We agree that rigid institu-
tionalization or prohibition of any one technique 
would be counter-productive, that misuse and 
misinterpretation of significance tests has been 
the main problem, and that “best statistical prac-
tice requires consideration of the full range of 
possible statistical techniques and researchers’ 
informed judgement to choose the most appro-
priate design, measure and analyses to serve the 
particular research goals” (Fidler & Cumming 
2008). Her one key disagreement is that she 
believes significance tests must be deemphasized 
and used less frequently because our students 
and colleagues will never learn to use them 
appropriately. We respond by asking that the 
neoFisherianism be given a chance. If our stu-
dents and colleagues have not responded well to 
force-feeding with the paleoFisherian and Ney-
man-Pearsonian paradigms, perhaps that speaks 
well to their intelligence.

Fallacy of the obese n

The demon of the overlarge sample: It lurks 
quietly in the darkness, waiting for researchers 
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to pass by who are too focused on obtaining ade-
quate sample sizes. If sample sizes are too large, 
one may be “in danger” of getting very low P 
values and establishing the sign and magnitude 
of even small effects with too much confidence. 
Oh, the horror of it all.

Though this “danger” has repeatedly been 
called to our attention for half a century, few 
have paid much heed — fortunately. The con-
cern derives from intersection of the generally 
accepted fact that almost all nil null hypotheses 
are false with the fact that the primary value of 
low P values is indeed as indicators of confi-
dence in the estimated sign and magnitude of 
effects. Berkson (1938) was an early instigator of 
the confusion, saying: “an observant statistician 
will agree that … when the numbers in the data 
[i.e. sample sizes] are quite large, the P’s tend to 
come out small …. If this be so, then we have 
something here that is apt to trouble the con-
science of a reflective statistician …. If we know 
in advance the P that will result from an applica-
tion of a Chi-square test to a large sample, there 
would seem to be no use in doing it on a smaller 
one.” Carver (1978) discussed how “Controlling 
experimenter bias is a much discussed problem, 
but not enough is said about the experimenter’s 
ability to increase the odds of getting statisti-
cally significant results simply by increasing 
the number of subjects in an experiment. In 
effect, Carver labeled as “bias” any attempt to 
gain power by increasing sample size. Good 
(1982) claimed that “a given P has dimishing 
significance as N increases” and used a Bayesian 
rationale for suggesting that a “standardized P 
value” be reported; where N > 100, this would 
approximately equal the P value that would 
have been obtained if N had been exactly 100. 
Serlin and Lapsley (1985) argued for “adopting 
a methodology … that, even with infinite sample 
size, does not always reject the null hypothesis 
[when it is false].” Anderson (1987) suggested 
“the appropriate significance level should be 
adjusted to sample size.” Levin (1998b) says that 
“intelligent hypothesis testing…will be based on 
sample sizes that are … not so large as to detect 
effects that are deemed to be substantially triv-
ial.” Anderson et al. (2000) reason that “using a 
fixed α-level to decide to reject or not reject the 
null hypothesis makes little sense as sample size 

increases … [so] theoretically, α should go to 
zero as n goes to infinity.” Daniel (1998) notes 
that “for a given statistical effect, a large sample 
is more likely to guarantee the researcher a sta-
tistically significant result than a small sample 
is … [with a large sample] even inordinately 
trivial differences between the two groups could 
be statistically significant … [a statistical sign-
ficance test] is largely a test of whether or not 
the sample is large ….” Ziliak and McCloskey 
(2008: 67, 81) accuse 22% of the 1980–1999 
research articles in American Economic Review 
of the “error” of failing to “use a small number 
of observations, such that statistically significant 
differences are not found merely by choosing 
a very large sample.” Levine et al. (2008a) 
announce that “Perhaps the most widely rec-
ognized limitation in NHST is its sensitivity to 
sample size …. When sample sizes are large, 
even trivial effects can have impressive-looking 
p values.” Rindskoff (1997), Nix and Barnette 
(1998), Thompson (1998), Marden (2000), and 
dozens of other writers seem to concur that the 
overlarge sample is a real “danger”.

Proponents of the danger of the obese n 
seem to worry too much about the ‘bottom of 
the class’ — those persons who confuse statis-
tical significance with importance or substan-
tive significance, and those who confuse strong 
confirmation of a prediction with strong con-
firmation of the theory or scientific hypothesis 
that generated the prediction. Such proponents 
want to keep low P values out of the hands of 
the ‘bottom of the class’ for the same reason we 
should keep matches out of the hands of chil-
dren. But outlawing matches, i.e. powerful tests, 
does not seem a reasonable solution. The fallacy 
of the obese n has been well discussed by Mayo 
(1985, 1996: 401–403, Mayo & Spanos 2009), 
who also points out that this fallacy has some-
times been part of the weak arsenal with which 
Bayesians have attacked frequentist statistics. 

Statistical hypotheses versus 
scientific hypotheses

Confusion between scientific inference and sta-
tistical inference has abounded in the statisti-
cal and disciplinary literature for much of the 
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past century. It has been most conspicuously 
reflected in the common failure to distinguish the 
concepts of statistical hypotheses and scientific 
hypotheses. In particular, many authors refer to 
the alternative statistical hypothesis (H1) as the 
“scientific” or “research” hypothesis (e.g. Fein-
stein 1975, Carver 1978, Gigerenzer & Murray 
1987: 12ff, Daniel 1990: 6, Wolterbeek 1994, 
Johnson 1999, Quinn & Keough 2002: 5). Thus 
we often find statements like: “the point of 
statistical analysis in ecological research is the 
testing of a scientific hypothesis that the imposed 
treatment had the hypothesized effect;” (Elli-
son 1996); “traditional significance tests pres-
ent p-values as a measure against a theory” 
(Thompson 2006); or “The accepted standard in 
most of ecology … is that a claim for a success-
ful theory requires rejection of a reasonable null 
hypothesis” (Gotelli & McGill 2006). Since true 
scientific hypotheses usually have a ‘directional’ 
character, the conflation of the two concepts 
has, for some scientists, lent an air of legitimacy 
to directional statistical hypotheses and 1-tailed 
tests.

Clear distinction despite Fisher

R. A. Fisher has sometimes been blamed for this 
confusion. Schmidt and Hunter (1997: 42), for 
example, claim the fact “that many researchers 
believe that null hypothesis significance testing 
and hypothesis testing in science in general are 
one and the same thing is a tribute to the persua-
sive impact of Fisher’s writings …. In his writ-
ings, Fisher equated null hypothesis significance 
testing with scientific hypothesis testing.” But did 
he? There is no hard evidence that Fisher failed 
to appreciate the distinction between statistical 
hypotheses and scientific hypotheses. However, 
his frequent lack of clarity and the particular titles 
he chose for some works clearly misled people. 
Among those titles were: The logic of inductive 
inference (1935c), Statistical methods and sci-
entific induction (1955), and Statistical methods 
and scientific inference (1956). He tended to get 
into trouble when he moved from the realm of 
mathematical statistics, where he was king, into 
the realm of the philosophy of science, where he 
was not and where precision of symbolic notation 

less easily offsets verbal imprecision. As Kendall 
(1963) noted, “Fisher had no gifts of exposition, 
even of his own ideas, and rarely set out explic-
itly the assumptions on which he was working.” 
Fisher was “a genius of the first rank, perhaps 
the most original mathematical scientist of the 
century. A difficult genius though, one in whom 
brilliance usually outdistances clarity” (B. Efron, 
in discussion of Savage 1976).

Fisher’s foibles are a weak excuse, how-
ever, for us to invoke in the 21st century and 
decades after the distinction between scientific 
and statistical hypotheses has been repeatedly 
clarified. Cox (1958) emphasized the distinction 
between “statistical inference” and “scientific 
inference” and how small a role the former 
sometimes plays in the latter. Anscombe (1961) 
stated “All scientific theories ultimately rest on a 
simple test of conformity: universal hypotheses 
are confirmed by noting the incidence of favor-
able cases, statistical hypotheses are confirmed 
[or at least supported] by significance tests.” 
Bolles (1962) amplified this, stating, “The final 
confidence [a scientist] can have in his scientific 
hypothesis is not dependent upon statistical sig-
nificance levels; it is ultimately determined by 
his ability to reject alternatives …. The effect of 
any single experimental verification [of a predic-
tion] is not to confirm a scientific hypothesis but 
only to make its a posteriori probability a little 
higher than its a priori probability …. One of 
the chief differences between the hypotheses 
of the statistician and those of the scientist is 
that when the statistician has rejected the null 
hypothesis, his job is virtually finished. The 
scientist, however, has only just begun his task.” 
Clark (1963) succinctly said, “Statistical hypoth-
eses concern the behavior of observed random 
variables, whereas scientific hypotheses treat the 
phenomena of nature and man.” Meehl (1967) 
said, “It is important to keep clear the distinc-
tion between the substantive theory of interest 
and the statistical hypothesis which is derived 
from it …. [I]n practice there is a tendency to 
conflate the substantive theory with the statis-
tical hypothesis, thereby conferring upon [the 
substantive theory] somewhat the same degree 
of support given H [H1] by successful refutation 
of the null hypothesis.” Henkel (1976: 34) noted, 
“A statistical hypothesis is a statement about a 
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population parameter, or parameters. Statistical 
hypotheses are usually not the same as the sub-
stantive, or scientific, hypotheses that we wish 
to test, but should be a logical consequence of 
the substantive hypotheses.” Finally, we can cite 
Simberloff (1990): “Scientific hypotheses are 
about phenomena in nature. Statistical hypoth-
eses are about properties of populations based 
on samples …. Rejection of one or more statis-
tical hypotheses would constitute one piece of 
evidence to be weighted in deciding whether to 
reject a scientific hypothesis.” There would not 
seem to be much room for confusion. But for 
some people the force or cachet of ‘hypothesis’ 
may simply overwhelm the distinction attempted 
by the qualifiers ‘scientific’ and ‘statistical’.

In most contexts, statistical hypotheses are 
only of two sorts: null (H0) and alternative (H1). 
There are various ways of structuring these 
according to where we wish to assign the burden 
of proof in a test. For example, as discussed ear-
lier, H0 could be that ∂ is zero, is some particular 
non-zero value, or is greater or lesser than some 
particular value. Neyman (1950) preferred the 
term “hypothesis tested” to “null,” to avoid any 
implication that it was always that ∂ = 0, but 
the suggestion was never widely accepted. In 
sum, statistical hypotheses are simply part of 
the mechanics of carrying out an assessment or 
summary of a given data set using simple formal 
procedures that help determine what the data 
set may or may not tell us with some degree of 
certainty. A scientific (or substantive or research) 
hypothesis, on the other hand, is tested only by 
assessments of multiple data sets or pieces of 
information, many of these assessments perhaps 
involving no statistical tests of any sort at all.

The same distinctions can be made in the 
language of models without any recourse to the 
term ‘hypothesis’. Thus Spanos (1999: 544) 
states, “Statistical models are viewed as first 
stage models in the sense that their primary goal 
is to provide statistically adequate descriptions 
of observable stochastic phenomena; statistical 
models do not pretend to offer explanation …. 
[They] are specified exclusively in terms of the 
observable random variables that presumably 
have given rise to the data. This should be con-
trasted with theory models which are defined in 
terms of theoretical concepts that might or might 

not have a direct connection with observational 
data.”

Unfortunately these waters are continually 
being muddied over and over again, especially 
in the literature of statistical criticism. As a 
recent example, Lukacs et al. (2007) state that 
“statistical models should represent a translation 
of scientific hypotheses to their equivalent math-
ematical expression. … The science hypotheses 
and statistical models should always be very 
tightly linked.” Failure to keep clear the distinc-
tion between statistical hypotheses (or models) 
and scientific hypotheses has driven many of 
the attacks on Fisherian significance testing by 
advocates of Bayesian, likelihood, information 
theoretic and even Neyman-Pearson methods. 
For these reasons we have treated the matter here 
at greater length than its simplicity might other-
wise call for.

Same distinction in applied research

It is sometimes implied that, in practical contexts 
where the scientific question seems simple — 
will this medicine improve patient survival? will 
this fertilizer increase yield? will this teaching 
method improve student test scores? — there is 
a one-to-one correspondence between the sci-
entific hypothesis and the alternative hypoth-
esis. But this results from a simplistic view of 
what the “practical scientist” must demonstrate. 
Chow (1987) is the clearest writer we find on 
this matter. He contrasts the testing of a fertil-
izer with the testing of a psychological theory, 
noting that issues of “generality” are relevant in 
both contexts and imply the need in each case of 
many studies and perhaps many sets of null and 
alternative hypotheses. In the fertilizer study, 
implicitly the usual context would entail assess-
ment of the fertilizers effectiveness under differ-
ent soil and climatic regimes and different crop 
management practices as Yates (1951) had also 
pointed out. Otherwise the reliability of advice 
to farmers may be very doubtful. So a multiplic-
ity of similar experiments might be called for 
to give them high collective generalizability or 
external validity. And a professional agronomist, 
if not his field technicians, may well have inter-
est in further questions and experiments aimed 
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at elucidating, for example, the physiological 
mechanisms determining the optimal fertilizer 
application rate and so on.

For testing a psychological theory and its 
generalizability, Chow (1987) emphasizes that a 
theory consists of a set of propositions and thus 
requires a variety of quite dissimilar experiments 
and other studies for its testing. However, a 
multiplicity of similar experiments may also be 
called for in order to document the generalizabil-
ity of the theory. Does it hold for both men and 
women, for children and adults, for persons in 
different cultures? The point, then, is that it will 
be rare that any scientific question of practical or 
theoretical import will be reducible to a single 
statistical alternative hypothesis or model.

A common delusion

Some of the confusion beween scientific and 
statistical hypotheses derives from the delusion, 
that strong evidence against H0 represents not 
only strong evidence in favor of H1 (which it 
does), but also strong evidence in favor of the 
scientific hypothesis or theory that predicted the 
failure of H0 — despite all the other scientific 
hypotheses that might have predicted the same 
failure of H0. We have quoted Meehl’s (1967) 
early warning above, and many other attempts 
have been made to correct that delusion (e.g. 
Meehl 1997, Henkel 1976, Oakes 1986, Kline 
2004, Levine et al. 2008a). Though it is an obvi-
ous one, it is a psychologically attractive one in 
that to provide strong confirmation of a theory is 
clearly more heroic than to simply provide one 
more data point in its favor, which is usually 
all that a single statistical test or single study 
accomplishes.

Some writers have proposed, unfairly we 
believe, that significance testing itself bears 
much responsibility for this delusion. Thus, 
Howard et al. (2000) state that “the most serious 
limitation of NHST is that it has led researchers 
to focus their efforts on designing a single study 
to address scientific hypotheses … it is rarely 
that a single study … can be viewed as provid-
ing a definitive test of a scientific hypothesis.” 
Researchers, heal thyselves. No fault lies with 
the significance test!

Null hypotheses and null models

A final semantic problem is one perhaps par-
ticular to ecology ever since debates in the late 
1970s and 1980s over problems of community 
ecology and island biogeography (Strong et. 
al. 1984). It is the confusion of statistical null 
hypotheses with so-called ‘null models’. That 
has led to statements such as, “null hypoth-
eses are not frequently used in ecology” (Strong 
1980: 273, Ford 2000: 217); “Null hypotheses 
in ecology are often unsatisfactory because they 
are virtually impossible to specify completely 
…” (Quinn & Dunham 1983); and “it may not 
be possible to construct null hypotheses because 
we cannot specify what may exist in the absence 
of a particular factor” (Ford 2000: 218). All these 
statements are intended to refer to null models. 
In some places Quinn and Dunham do put quota-
tion marks about “null hypothesis” when they 
use it to mean null model, however, and in gen-
eral they do give a good analysis of the restricted 
utility of null models in ecological research, as 
do the sharp debates in the collection edited by 
Strong et al. (1984).

Where a null model is very specific and 
developed for a very restricted domain, it perhaps 
can be translated into a single statistical null 
hypothesis. However, when the null model is a 
broader statement it may have more the character 
of a counter-research hypothesis, a negation of 
the influence of a factor, a proposition of “non-
existence of the cause” (Quinn & Dunham 1983). 
An example would be the proposition that com-
petition does not influence the structure of island 
bird assemblages. In theory one can determine 
what the structure of the assemblages would be 
if competition had had no influence on them, and 
then compare that, perhaps even with a statistical 
significance test, to the actual observed structure. 
But the usual impossibility in practice of coming 
up with a single, cogent, defensible null model 
usually will mean that a counter-research hypoth-
esis, like its counterpart research hypothesis (e.g. 
competition does influence the structure of island 
bird assemblages), can only be tested via a mul-
titude of separate studies and analyses of more 
focused questions, using not only significance 
tests but also likelihood and information theoretic 
model selection methods. In any case, confusion 
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may be avoided if we use null hypothesis in these 
contexts only with the specific significance tests 
that may be used in evaluating the predictions of 
a null model.

Complaints of Bayesians and 
likelihooders

Up to this point we have considered primarily 
criticisms of significance tests and P values that 
have come from the frequentist schools of statis-
tics. Broadly construed, these include Neyman-
Pearsonians, paleoFisherians and neoFisherians, 
though some writers use ‘frequentist’ exclusively 
for the Neyman-Pearson tradition where α is 
fixed and P values need be reported only as > 
α or ≤ α. Their grounds of complaint have been 
that significance tests are superfluous or that they 
are excessively used or carelessly misinterpreted 
and that scientists are incorrigible and should not 
be allowed ‘to play with matches’.

P values exaggerate evidence?

Many champions of Bayesian, likelihood, and 
information-theoretic methods level harsher 
charges against significance tests. They claim 
that they are logically flawed at a fundamental 
level and do not provide the information that 
even their most careful users think they do. Per-
haps the two harshest specific charges are that 
P values exaggerate the evidence against null 
hypotheses and that they are based on “unob-
served data.” Let us look at each of these com-
plaints and clear up the illogicalities and mis-
understandings that have generated them. More 
comprehensive critical assessments of Bayesian 
statistics can be found in Lecam (1977), Efron 
(1986), Chow (1996), Spanos (1999), Dennis 
(1996, 2004), Mayo (1996, 1997) and Cox 
(2006a, 2006b).

Let us start by presenting the first claim in the 
words of several of its believers:

“… classical procedures are often ready 
severely to reject the null hypothesis on the basis 
of data that do not greatly detract from its credu-
lity, which dramatically demonstrates the practi-

cal difference between Bayesian and classical 
statistics.” (Edwards et al. 1963)

“… P values can be highly misleading meas-
ures of the evidence provided by the data against 
the null hypothesis … p gives a very misleading 
impression as to the validity of H0 from almost 
any evidentiary viewpoint … actual evidence 
against a null (as measured, say, by posterior 
probability or comparative likelihood) can differ 
by an order of magnitude from the P value.” 
(Berger & Sellke 1987)

“Bayes factors show that P values greatly 
overstate the evidence against the null hypoth-
esis.” (Goodman 1999b)

“Small values of P are taken to represent 
strong evidence that the null hypothesis is false, 
but workers demonstrated long ago that such is 
not the case.” (Johnson 1999)

“… the P value generally overstates the evi-
dence against H0, i.e. it rejects the H0 when the 
posterior probability suggests that the evidence 
against H0 is relatively weak.” (Quinn & Keough 
2002: 56)

“Comparison to a very general Bayesian 
analysis shows that p values overestimate the 
evidence against the null hypothesis …. The p 
value does not quantify statistical evidence.” 
(Wagenmakers 2007)

Similar statements are found in Berger and 
Delampdy (1987), Falk and Greenbaum (1995), 
Goodman (2003), Hubbard and Bayari (2003), 
and throughout the Bayesian literature.

The potency of these claims is sometimes 
reinforced by misrepresentation of what Bayesian 
methods themselves can provide. For example, 
Mills (2003) claims “it is possible to determine 
the probability of the null hypothesis, given the 
data at hand if one uses the Bayesian approach to 
statistical analysis”; Berger (2003) reports that a 
“conditional frequentist error probability … pre-
cisely equal[s] the objective Bayesian [posterior] 
probabilit[y] and … is the probability that the 
hypothesis is true …”; McCulloch (2004) states 
that “Bayesians can calculate the probability that 
a null hypothesis is false. This has a much more 
straightforward interpretation than the awkward 
definition of a frequentist P-value and is what 
many scientists would like to calculate;” Ellison 
(2004) opines that “Bayesian methods … pro-
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vide a direct measure of the probability of one or 
more hypotheses of interest;” Gigerenzer et al. 
(2004) claim that “Unlike null hypothesis testing, 
Bayes’ rule can actually provide a probability of a 
hypothesis;” and McCarthy (2007: 52) states that 
“Perhaps the main defining feature of Bayesian 
methods is calculation of the probability of a 
hypothesis being true.”

All of these statements about the weak evi-
dential nature of P values and about the meaning 
of Bayesian posterior probabilities are false.

Two Bayesian examples dissected

A full review of the extensive literature on 
Bayesian versus frequentist methodologies is not 
needed to demonstrate the erroneous nature of 
the above Bayesian claims. Let us consider just 
two sets of examples that above authors use to 
try to make their case. In the interest of brevity, 
we presume familiarity with basic Bayesian con-
cepts on the part of the reader.

Berger and Sellke (1987) give examples 
where the point null H0: ∂ = 0 is being tested 
against the standard composite H1: ∂ ≠ 0. They 
apply a so-called “objective” or “non-inform-
ative” Bayesian approach where H0 and H1 are 
both assigned a prior probability of 0.5. Not 
surprisingly, data sets yielding a P value of 0.05 
yield Bayesian posterior probabilities several-
fold higher. That is interpreted to mean that, 
despite the P of 0.05, “there is at best very weak 
evidence against” H0. They imply that the pos-
terior probability is the true “magnitude of the 
evidence against H0.”

Bayesian priors can yield results reflecting 
not just an investigator’s true beliefs but also 
political, financial or religious motivations. Such 
results could damage science or society, at least 
in the short run, in the hands of statistically 
unsophisticated decision makers. Dennis (1996, 
2004) gives examples of investigators concerned 
about management of rare species, pollutant con-
centrations in rivers downstream from mining 
operations, and efficacy of dietary supplements, 
and wonders whether such investigators’ ‘prior 
beliefs’ about those situations might vary accord-
ing to where their salary or research funds were 
coming from. In a rather different sphere, Unwin 

(2003) uses a Bayesian approach to estimate 
the probability of the existence of god. A good 
‘objective’ Bayesian, he gives ‘exists’ and ‘does 
not exist’ both a prior of 0.50, then evaluates a 
data set consisting of six facts, and ends up with 
a posterior probability of 0.67 in favor of ‘exists,’ 
which is then upgraded to 0.95 by an additional 
injection of personal belief. As Dawkins (2006: 
132) notes in his critique of this analysis, “It 
sounds like a joke, but that really is how he 
[Unwin] proceeds …. I can’t get excited about 
personal opinions, whether Unwin’s or mine.”

The relative and subjective nature of Baye-
sian ‘probabilities’ needs to be fully compre-
hended, as does the fact that none are probabili-
ties of the truth of hypotheses. Bayesian priors 
are guesses of the investigator or imposed by 
some ‘objective’ convention. They are degrees of 
belief assigned non-zero values only for the spe-
cific point hypotheses or models in the set con-
sidered. A point hypothesis or model outside that 
set may be superior to, or closer to the truth than, 
any in the set. The priors are labeled as “subjec-
tive,” “personalistic,” “objective,” or “reference” 
“probabilities” of the truth of an hypothesis. 
Bayesian posterior probabilities are then just 
guesses modified by additional information. In 
much of their writings, especially those criticiz-
ing significance tests, Bayesians drop all qualifi-
ers and just claim to be estimating the “probabil-
ity of truth”. “In the world of Bayesian statistics, 
truth is personal and is measured by blending 
data with personal beliefs” (Dennis 2004).

One of the major logical incongruities here 
is that significance tests in all disciplines are 
mostly used where H0 is known or strongly 
suspected a priori to be false. So by Bayesian 
logic it should be assigned a low prior probabil-
ity, e.g. 0.01 or 0.10. Casella and Berger (1987) 
note this would result in a much lower posterior 
probability. Berger and Sellke (1987), referring 
to a hypothetical example, suggest, however, 
that even using a prior as low as 0.15 for H0 
would constitute “blatant bias toward H1 [and] 
… hardly be tolerated in a Bayesian analysis.” 
So much for the desirability of using priors 
to express prior information or personal belief. 
The “bias” responsible for low priors and such 
contradictions is better labeled the wisdom of the 
investigator in selecting for study, independent 
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variables that indeed do influence or are cor-
related with the dependent variables of interest. 
As Royall (1997: 73) has noted, attempts to find 
completely objective or ‘non-informative’ priors 
“have been unsuccessful for a simple reason — 
pure ignorance cannot be represented by a prob-
ability distribution.”

Even more damning to Berger and Sellke’s 
claims is the fact that if the prior probability of 
H0 is set at < 0.35, and if the observed P value 
is 0.05, then the posterior probability for H0 will 
always be < 0.05 (Krueger 2001). It would be 
rare that a subjective prior for H0 of > 0.35 could 
be justified. That prior usually should be much 
lower as we have suggested. Thus, as compared 
with Bayesian analyses with low priors for H0, 
standard significance tests will generally under-
estimate the evidence against H0, at least if we 
assume — as Bayesians often do — that a P 
value and a Bayesian posterior probability can 
be meaningfully compared simply because both 
can range from 0 to 1.

For much the same reasons we reject as 
unhelpful the suggestion (Selke et al. 2001, 
Berger 2003) that the lower bound on the objec-
tive posterior probability of H0 will be of any 
value as a “quick and dirty calibration” against 
which to compare P values when H1 is the stand-
ard composite alternative one. Critical comments 
of seven discussants of Berger (2003) printed at 
the end of that article, as well as Berger’s rejoin-
der, address this and related issues further.

Not willing to yield ground in the face of 
the arbitrariness inserted into analyses by the 
subjective nature of all systems of priors, clever 
Bayesians will find a fallback position. Good-
man (1999b), for example, claims that “The 
minimum Bayes factor [MBF] is objective and 
can be used in lieu of the P values as a measure 
of the evidential strength.” The MBF does not 
require specification of prior probabilities. It is 
calculated, in a comparison of two group means, 
as the ratio of the likelihood function at two 
points, ∂ = 0 and ∂ = d, where d is the observed 
difference between the sample means. Goodman 
shows that if the data are such that a significance 
test yields P = 0.05, then the MBF will equal 
0.15, “meaning that the null hypothesis gets 15% 
as much support as the single best supported 
[point alternative] hypothesis … [thus] indicat-

ing that the evidence against the null hypothesis 
is not nearly as strong as ‘P = 0.05’ suggests.”

A better logician will counter “So what?” to 
the first part of that statement and “non sequitur 
and false!” to the second. Let’s imagine that d = 
12.2. In almost any real situation in the basic or 
applied sciences, the investigator will want to 
report the actual means, d, P, samples sizes and 
possibly confidence intervals or other auxiliary 
descriptors of the data set. But a measure of the 
likelihood of the null relative to the likelihood 
of the point alternative that ∂ = 12.2 will be of 
no value or interest. The investigator and his 
readers have no focused interest in the likeli-
hood of that specific ∂ of 12.2, but only in having 
some confidence that ∂ ≠ 0 and that the sign and 
magnitude of and precision of d are reasonably 
estimated by some standard. Goodman (1999b) 
claims that “many Bayesian reanalyses of clini-
cal trials conclude that the observed differences 
are not likely to be true” despite, he implies, 
being supported by low (< 0.05) P values. His 
statement is true, of course, if it is taken to mean 
only that d is rarely likely to equal ∂. In a similar 
vein, Lindley (1990) raises the question of “how 
much money has been wasted on inappropriate, 
incoherent analyses of clinical trials” because 
Bayesian methods were not used. We can only 
exclaim, “Woe to medicine in the clutches of 
Bayesians!” In a gently worded but devastating 
critique, Moyé (2008) concurs. He summarizes 
the many philosophical and practical problems 
that prevent Bayesian methods, in their current 
state, from having much positive value for the 
analysis of clinical trials or, by extension, manip-
ulative experiments of any sort.

Pluralism remembered

Clarification of this confusion requires only 
an understanding of the differing purposes and 
capabilities of different methodologies. A P 
value is a measure of the absolute plausibility 
of H0. We generally like this to be low so we can 
get on to analysis of what the estimated effect 
size means for the phenomena under study. The 
null and alternative hypotheses are not scientific 
or research hypotheses, and their relative plausi-
bilities matter but are not a main concern. Focus 
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is on estimation. In most significance assessment 
situations, effect size is indeed estimated as one 
step in the calculation of the P value. (Above, 
the qualifier absolute is used to emphasise that 
P is not the plausibility of H0 relative to any par-
ticular point or subset of alternative hypotheses 
within H1: ∂ ≠ 0. The absolute plausibility of H0 
can be higher or lower than the absolute plausi-
bility that might be calculated for any point H1 
by setting that H1 up as the null. A P value is not 
a measure of the relative or absolute implausibil-
ity of the composite H1: ∂ ≠ 0, as that H1 is plau-
sible whether P is high or low. And P certainly is 
not the probability that H0 is true).

On the other side of a tall fence are other 
methodologies appropriate to those less common 
situations where interest is in assessing the rela-
tive plausibilities of two or more point hypoth-
eses or models. Bayesian statistics, as well as 
likelihood and information theoretic methodolo-
gies, are available for these objectives. Some 
persons on this multi-model side of the fence 
often seem not to notice the fence. They are 
given to making statements such as: “In view 
of the likelihood principle, all of these classical 
[frequentist] ideas come under new scrutiny, and 
must, I believe, be abandoned or seriously modi-
fied” (Savage 1962: 18); “… the reason why a 
plausible rationale for signifcance tests has not 
yet been found is because none exists” (Royall 
1997: 68); “The solution to the problem of sta-
tistical inference … is to switch from the p value 
methodology to a model selection methodology” 
(Wagenmakers 2007); or “I recommend that 
ecologists largely stop using [significance tests] 
in favor of [Bayesian and information-theoretic 
methods] (McCarthy 2007).”

Fortunately, there are appearing more and 
more papers that accept the obvious fact that 
significance assessment and other statistical 
methodologies serve different functions and can 
coexist in the arsenal of any individual scien-
tist or statistician. Among works evincing this 
attitude in various ways we can mention Levin 
(1998b), McLean and Ernest (1998), Howard 
et al. (2000), Gigerenzer et al. (2004), Clark 
(2005), Stephens et al. (2005), Cox (2006a), and 
Hobbs and Hilborn (2006). Surely many calm 
souls regard the fact as so obvious to be hardly 
worth stating.

P values based on “unobserved data”?

Basing conclusions on ‘unobserved data’ would, 
on the face of it, not sound like a good idea in 
any circumstance. But this has been a pejora-
tive manner of describing P values that has been 
much used by aficionados of Bayesian and like-
lihood methods in their critiques of frequentist 
methods. In his classic early treatise on likeli-
hood methods, Jeffreys (1939: 319) stated that 
“The use of the P integral in significance tests … 
is fallacious because it rejects the hypothesis on 
account of observations that have not occurred.” 
This has been repeated over and over in mislead-
ing and uncritical fashion. P values are said to be 
based on: “additional, unlikely and unobserved 
results” (Ellison 1996); “unobserved values” 
(Royall 1997); “data that were not observed” 
(Johnson 1999); “less likely, unobserved results” 
(Anderson et al. 2000); or “data that were never 
observed” (Wagenmakers 2007).

Such remarks refer to the fact that P is not the 
probability of the observed ‘point’ result, e.g. d, 
given H0, but rather the probability of that result 
or a more ‘extreme’ one, e.g. a result ≥ |d| in a 
standard two-tailed t-test. It is the probability 
of a class of hypothetical results but a class that 
is completely defined by the observed data or 
result. There are no “unobserved data” at issue. 
Defined in this classic Fisherian manner, most 
scientists and statisticians reasonably regard a 
low P value as good evidence against H0 and in 
favor of H1 on the simple ground that the only 
other way to account for a low P value would be 
to suppose that a rare (or very rare, or very, very 
rare) event had occurred, i.e. one in the class of 
all values ≥ |d| when ∂ = 0. Bayesians and like-
lihooders sometimes explain their objection to P 
values by saying they violate the likelihood prin-
ciple. But this only means that those folks object 
to the question the neoFisherian frequentist is 
asking and demand that he ask another, even if 
that other question is not of interest or cannot be 
answered well.

Final remarks

The phrase “final collapse” in our title acknowl-
edges the work of armies of critics who have 
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gone before us. Their cannonades had done most 
of the job of taking down the baroque cathedral 
of paleoFisherian-Neyman-Pearsonian statistical 
catechisms, and many of its inhabitants had fled 
long ago to a simpler but better-ordered and 
Bayesian-proof, neoFisherian cottage down the 
road. We came along after the dust had settled, 
and have just tried to push over the last remain-
ing structures of the old cathedral and to show 
the logic of the neoFisherian reformation. Most 
of the stone building blocks from the old cathe-
dral were still of value. They just needed to be 
reassembled with fresh mortar by a new genera-
tion of scientists and statisticians to increase the 
guest capacity and beautify the gardens of the 
neoFisherian cottage. At the end of the lane, 
some new neighbors have their own cottage 
nearly finished, constructed with modern likeli-
hood and information theoretic tools. The more 
temperate of these folks should be a nice addi-
tion to local society, especially if their dogs are 
kept out of the neoFisherian petunia beds.
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