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The dynamics of a self-organised model of shoaling fish are explored within a
Lagrangian (or individual based) framework in order to identify the key behavioural
factors that shape its dynamic landscape. By exploring systematically all possible
initial states we identify the transitions to and between the different possible station-
ary states (schooling vs. swarming or milling). The route to these stationary states is
explained from an individual perspective. On the behavioural level we discuss in par-
ticular the decisive impact of two traits, the perception angle and the manoeuvrability
of the fish. A key result of this study is that the fish density in certain stationary states
reaches values where each fish perceives each other; local interactions actually become
global interactions. We further discuss the specific value of such Lagrangian studies in
comparison to analytical approaches, in particular the freedom to include any impor-

tant biological trait and the importance of an exhaustive numerical investigation.

Introduction

One of the most fascinating features of collective
fish behaviour is their ability to move around
in closed groups (Keenleyside 1955, Radakov
1973, Giske et al. 1998, Becco et al. 20006).
About half the fish species are known to form
such aggregation patterns at least at one stage
of their life history. This collective behaviour
can be found at the larval stage and can remain
an obligate behavioural feature throughout their
lifespan (Pitcher & Parrish 1993). Moreover,
aggregation behavior provides protection against
predators and in some cases increases foraging
efficiency and reproduction rates (Pitcher & Par-
rish 1993, Hoare et al. 2004).

Fish can form loosely structured groups
(called shoals) or highly organised structures
(called schools) with synchronized movements
and correlated headings (Pitcher 1983). Fish
schools can be understood as self-organised sys-
tems since they do not need leaders or external
stimuli to avoid splitting up, move cohesively
and adopt a common direction (Hammer & Par-
rish 1997, Parrish & Edelstein-Keshet 1999).
School dynamics emerges from numerous mutual
interactions between individuals that are within a
limited perception range. The individual move-
ment decision only depends on its neighbours’
positions and headings.

Based on optomotor reaction schemes, fish
can consistently maintain the parallel orienta-
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tion with neighbours, whether they are at the
head, the middle or the rear end of the school
(Shaw & Tucker 1965). This visual detection is
complemented by a specific sensory device, the
lateral line, which is sensitive to variations of
water pression around the body of the fish, and
can provide informations about movement speed
and orientation of close neighbours (Partridge &
Pitcher 1980).

While only few studies have tried to disen-
tangle the underlying behavioural mechanisms
(Aoki 1980, Parrish & Turchin 1997, Reebs
2001, Suzuki 2003, Griinbaum et al. 2004,
Tien et al. 2004), many theoretical models have
emerged to build a conceptual framework in
order to identify the involved mechanisms at
least qualitatively (Aoki 1982, Huth & Wissel
1993, for a good review see Parrish et al. 2002).
Thanks to such theoretical studies one can then
design experimental setups to test and to quan-
tify the underlying hypothesis.

There are two classes of models at hand
(Levin 1997, Topaz 2006). The first one adopts
an Eulerian approach where the movement
dynamics are described by differential equations
that represent a mean field approximation of the
individual behavioural decisions as a function of
their available information, which is in particular
the position and the heading of conspecifics in
some zone of perception. While there are some
analytical tools to study the dynamics of such
models (Griinbaum 1994, 1998, Niwa 1996,
1998, Toner & Tu 1998, Tu 2000, Adioui et al.
2003), there exists usually no analytical solution;
they have to be solved numerically (Mogilner &
Edelstein-Keshet 1996, Levine & Rappel 2000,
Mogilner et al. 2003). Furthermore, many bio-
logically relevant features cannot be incorpo-
rated into such models, for example the presence
of a blind perception zone behind each fish. This
is where the second class of models comes in.
They adopt a Lagrangian approach and model
each individual as an independent unit with
its own behaviour and interactions with other
units or the environment (Vicsek et al. 1995,
Grégoire et al. 2003). These individual based
models (IBM) are analytically even less tracta-
ble and their analysis relies on fast and efficient
numerical simulation, but they leave much more
room to include biologically important features

(Aoki 1982, Romey 1996, Inada & Kawachi
2002, Viscido et al. 2005). Recent computer
power has increased these models’ popularity
and efforts are underway to unify their usage
and description (Grimm & Railsback 2005). The
present study will rely on such an IBM in order
to deepen our understanding of what particular
behavioural traits drive the collective properties
of a fish shoal.

Most modelling studies of fish schooling
describe the collective state with some global
measure, e.g. group polarization or angular
momentum, density (characterized by the mean
nearest neighbour distance) or fragmentation
(Viscido et al. 2005). These measures are well
defined at the stationary state, which is the state
where the collective dynamics converge from
a given initial condition. They characterise this
stationary state for the particular model hypoth-
eses (e.g. the size of the perception radius) and
permit to test the model’s sensitivity with respect
to them. However, the computing power neces-
sary to run these simulations often limits the
extent of a sensitivity analysis. Furthermore,
there is a multitude of different IBM’s teeming in
the literature (Parrish er al. 2002), it is therefore
difficult to identify the crucial factors at the base
of some particular collective phenomenon. We
therefore use in this study the most widespread
model where fish interactions are limited to a
short-range repulsion, a middle-range alignment
and a far-range attraction (Couzin et al. 2002),
and the aim is to gain further insight into this
model’s dynamic behaviour by doing a com-
bined sensitivity analysis on both model param-
eters and initial conditions.

The first behavioural priority in this model
is the avoidance of collisions: when a neighbour
comes within a zone of repulsion the individual
turns away at maximal speed. For neighbours
outside this zone individuals tend to align their
speed vector if these neighbours are still within
a zone of orientation, or to approach them if
they are farther away but still within the percep-
tion radius (zone of attraction). This is prob-
ably a minimal model that ensures both staying
together and moving ahead. This model (or close
variants of it) was the subject of most theoreti-
cal studies within the last twenty years (Parrish
et al. 2002). The principal stationary dynamics
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(Fig. 1) are swarming (high density but uncor- mill school
related speed vectors), milling (turning around \?‘\

in donut form) or schooling (moving collectively 1}\% . X

straight ahead at maximal speed). Couzin et al. !‘\’N' 4

(2005) showed that even this minimal model
enables the group to make elaborated self-organ-
ised collective choices.

The sensitivity of the collective phenomena
to the initial conditions is rarely addressed in
the aforementioned studies. However, in order
to discover all possible dynamics or dynamic
changes one has to explore various initial states.
Studying the system evolution from one fixed
initial condition only gives a partial view of the
model capabilities. For instance, Couzin et al.
(2002) and Viscido et al. (2005) computed the
collective behaviour landscape starting from an
initial condition close to swarming (random ori-
entation and position). Hence, they answered the
question of which sizes of the zones of attraction
and alignment let a schooling behaviour emerge
from random alignment at a given density. This
landscape may be very different with other ini-
tial conditions (e.g. with schooling individuals
to explore which sizes let a swarming group
emerge from a schooling one or whether school-
ing is a stationary state).

Varying initial conditions is particularly
important when multiple stationary states exist
for the same rules and parameter values. In such a
case, the final stable pattern will strongly depend
on the initial conditions (e.g. the density and
polarization at some earlier time). Taking again
the example of Couzin et al. (2002), they showed
that two opposite collective patterns (swarming
vs. schooling) can emerge with the same rules,
depending on the collective state of the group
about 200 seconds earlier. They also showed that
hysteresis can arise when the zone of orientation
is changed smoothly step by step every T seconds
(with T of the same order as the relaxation time),
which is a formal illustration that the final pattern
depends on initial conditions.

In this paper we will explore the model’s com-
plete system dynamics, focusing on the two most
relevant macroscopic characteristics: alignment
(or polarization) and density. The only restric-
tion on initial conditions will be to avoid that the
group splits up (which systematically happens
when the density is too low). We will test in par-

VG N

Fig. 1. The three types of collective behaviour observed
in this study (simulation snapshots): swarming behav-
iour without any correlation between fish orientation,
milling behaviour where fish tend to be inversely aligned
with their farthest neighbour, and schooling behaviour
where all fish are swimming in the same direction and
the group is moving at maximal speed.

ticular the sensitivity of polarization with respect
to several model parameters: the size of the zone
of orientation, curvature and speed of individual
trajectories, the size of a blind rear zone, weight-
ing the influence of neighbours by their distance,
and the level of noise in the system.

Methods
The model

We used in all simulations N = 100 individuals
that move in a 3-dimensional continuous (off-
lattice) unbounded space. Time was discretized
in steps of length 7 = 0.1 s. Each individual i is
characterized at time ¢ by its 3-coordinates posi-
tion vector P(#) and its 3-dimensional unit speed
vector V(?) (see Fig. 2). The evolution of the
group is given by

P(t+0) =P +vi V(0),

where v is the (constant) speed expressed in
body lengths per second (BL s™). Individual
behavioural decisions only affect the vector V(1)
and define its value V(7 + 7).

We assume that the body of each individual
is perfectly aligned with its speed vector, V (?)
therefore defines a natural subjective coordinate
system for individual i, defining in particular its
front and rear directions. All the fish within a
connected group (see precise definition below)
are considered to be neighbours of each other.
We further assume that an individual i can assess
the position and speed heading of the neighbours
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Fig. 2. — a: The behavioural model of the focal individual (centre) with respect to neighbours (characterized by their
relative distance vector r): avoidance in the zone of repulsion zor, alignment in zone zoo and attraction in zone zoa.
o denotes the perception angle. — b: Characterization of individual displacement by the position vector P(t) and the
orientation vector V(t). ds and de¢ represent curvilinear displacement and turning angle (respectively) during time dt.

that are within a perception sphere with the
exception of a blind cone in its rear. The visual
field is therefore characterised by an angle of +a
degrees from the front direction to the rear.

We took as a reference model the behavioural
rules defined by Couzin et al. (2002). Adopting
the same model with a complementary approach
allowed us to deepen our understanding of the
internal logic of this collective behaviour. The
core characteristic of this model is that the
behavioural response of individual i to its neigh-
bours is mediated through a desired direction
D(#) computed from the perceived neighbours.
The perception sphere within the visual field
(i.e. without the blind cone) is decomposed into
three non-overlapping zones of increasing range:
zone of repulsion, zone of orientation and zone
of attraction (Fig. 2a) with outer radii of ror, roo
and roa respectively. The desired direction D (7)
is now computed from the number of neighbours
(respectively n,n ,n ) in each zone as follows:
If there is at least one neighbour in the repulsion
zone (n,_> 0), repulsion prevails and

—i r, (1)

i |1 (l)|
where r[.j(t) denotes the vector from the posi-
tion of the focal individual i to the position of
individual j (Fig. 2a). This repulsion mechanism
at the body length scale ensures that two fish
bodies do not merge. If there is no neighbour in
the repulsion zone (n_= 0) but some neighbours

D.(1)=

are present in the perception volume (n, >0 or n,
> 0), then

D ()= ZV(t>+nZ|”()|

where the Vj.(t) denote the unit speed vectors of
neighbours j in the orientation zone which add
up into an orientation matching component, and
the rU(t) add up into an attraction component.
We introduced a factor # in order to weight both
components differentially (in the original model
7 = 1). In all other cases D (7) is simply ignored
and V () remains unaffected.

In the original model (Couzin et al. 2002)
this deterministic value of D () was blurred by a
Gaussian noise added to each of its components
in order to mimic the lack of precision in the per-
ception process. Noise can significantly alter the
collective pattern (e.g. the onset of the schooling
structure can depend on the level of individual
fluctuations, Niwa 1996) and will therefore also
be included in the present work. The specific
implementation will be detailed below.

Once D (1) has been computed for all individ-
uals at time ¢, each individual i rotates its speed
vector V (1) towards D () with a constant turning
rate 6 (rad s™). This limit prevents the instanta-
neous adjustment of V(¢) to D(r) (Mogilner et
al. 1996), except when D (7) is already very close
to V (¢). Note that this movement rule enforces a
constant linear speed in contrast to mechanistic
models based on forces (Viscido et al. 2005).
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The actual turning rate 6 can be further
decomposed into linear and angular speed,

Gzﬁzﬁézk‘v
dt ds dt

where d¢ and ds are respectively the turning
angle of V(7) and the curvilinear displacement
of P(r) during dr (Fig. 2b), k is a curvature, and
v is the linear speed. The curvature k measures
the angle turned per distance unit (rad BL™") and
denotes the ability of the fish to make sharp turns
(e.g. the number of body lengths it has to swim
to make a full U-turn is given by ds = 7/k).

Ror and roa were set to 1 and to 20 BL (body
lengths) respectively throughout this study. In
order to assess the role of alignment we varied
roo from ror (i.e. no alignment, only repulsion/
attraction) to roa (only repulsion/alignment, no
attraction), with a step size of 0.5 for roo € (1,
5) and a step size of 1 for roo > 5 (giving overall
24 values).

Noise

Stochastic effects are likely to weaken the accu-
racy of the perception of distances and headings
of neighbours. However, if noise is only applied
to D (), a fish undergoing no influence from its
neighbours (when it is either isolated or when all
its neighbours are in its blind rear cone) would
keep its speed vector constant, resulting in an
unrealistically perfect straight path. Noise was
therefore applied to V (7) after its correction with
respect to D (7). In this way noise represents
the overall effect of perception errors as well
as motor decision errors. In the absence of any
interactions with neighbours the group would
simply undergo a spatial diffusion.

In order to keep the linear speed v constant,
noise was only applied to the speed vector. It
is therefore an angular noise, resulting in an
angular diffusion (Perrin 1928, Brillinger 1997,
Caillol 2004). In order to keep the implementa-
tion independent of the time step 7, angular noise
was determined by a rotational diffusion coef-
ficient D_(rad® s™), as in spatial diffusion (m*s™,
Lombardo et al. 2006). The angular stochastic
deviation dy during the time step T was drawn
randomly from a normal distribution N(0,0)

with a variance proportional to the time step 7,
0,.2 = 2D 1. V(#) was then rotated by dy around a
uniformly distributed random vector orthogonal
to V(7). Note that this specification of angular
noise allows to ensure that noise stays within
the turning capacity imposed by the maximal
curvature k: for 95% of noise angle deviation to
remain within the deviation permitted by maxi-
mal curvature, we must simply set

Cl
p <X}~
' 1.96 ) 27
with the reference values k = 0.23 rad BL™, v =

3BLs"and 7=0.1s,we get D <20 deg”s™' or
0.006 rad?s'.

Characterizing collective dynamics
Group polarization

At the collective level we characterized the
dynamics in terms of polarization, computed as in
Vicsek et al. (1995) and Couzin et al. (2002) by

0,1 =~ V.(0)

(note that IV ()l = 1 for each i). O (?) close to
1 indicates that the individual speed vectors
are close to each other (schooling) and permits
the group to travel long distances while staying
together. On the other hand, an O_(?) close to 0
lets the group stay in the same place (swarming
or milling).

The group dynamics converge within 30 s to
their stationary state; we therefore run simula-
tions for 60 s and computed the mean O over
the last 20 seconds. Control simulations over 8
min gave exactly the same polarizations. Results
were also unaffected when setting 7to 0.01 s. We
finally also verified that 60 s were enough time
to move away from the initial conditions and to
detect the group’s dissolution in the absence of
interactions.

Group connectedness

We focused on groups of fish that remain a
single unit, i.e. we discarded the cases when
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the group underwent a fission event. The group
was assumed to remain a unique unit if each
individual in the group was in contact with all
other ones, either directly or indirectly. Two indi-
viduals were considered in direct contact if their
inter-distance is lower than the maximal percep-
tion radius zoa. Two individuals were considered
in indirect contact if a chain of direct contacts
through any number of neighbours could con-
nect them. We finally assessed group connected-
ness by the algorithm for equivalence classes
given in Press et al. (1992: p. 345).

Dynamics from an individual’s perspective

To explore the corresponding dynamics from
the individual’s perspective we computed an
individual density measure <A> as the mean dis-
tance to the farthest neighbour and an individual
polarization measure

1 &
0,= ﬁgvx .VA(U’

where A(i) denotes the farthest neighbour of indi-
vidual i, and the dot denotes the dot product.
Since the speed vectors are scaled to unit, this
dot product is the cosine of the angle between
the headings of individuals i and A(i). In the con-
text of connected groups the frequently measured
mean nearest neighbour distance is a simple con-
sequence of the short range repulsion distance. On
the other hand, the density measure <A> allows
to explore whether the dynamics of a connected
group happen at a larger scale than the individual
interaction range, with information propagating
through the group. Namely, we can distinguish
the case when all the fish are within a sphere of
diameter roa (everybody influences everybody,
(<A> < 1) from the case where individual fish only
perceive part of the (connected) group (<4>= 1).

Systematic exploration of the initial
conditions
Initial density

The N individuals were initially spread uni-
formly in a sphere of radius

R:%/ﬁfroa.

The initial sphere volume is therefore given
by

R )

that is each individual was allocated on aver-
age a small sphere of radius f roa. The factor f
is inversely proportional to the cube root of the
initial density.

Given a cut-off distance for contact (in the
present case, the maximal perception range roa),
the connectedness of the group depends on its
density and on the raw number of individuals.
For N = 100 individuals we computed the prob-
ability for the group to remain connected: it falls
below 0.05 for f> 0.5 and exceeds 0.95 for f <
0.38.

What are the values of f that should be
explored? Note that a group has a vanishing
probability to be initially connected if the indi-
viduals are given (on average) a small sphere
that nearly covers their perception radius (f close
to 1). We therefore stopped the exploration of
density at a value where the group is initially
almost surely not unique (f = 0.62). On the
other end we started at the highest density at
which all individuals are packed into their zone
of repulsion (f . = ror/roa = 1/20 ). Prelimi-
nary studies further showed that the collective
behaviour is most sensitive to the initial density
for low values of f. We therefore included the
effect of density by varying f as a power series.
A power factor of 1.07 yielded a set of 38 initial

density values from f _ tof .

Initial polarization

The initial orientations of the unit speed vectors
were determined by a parameter 1 ranging in [—
1, 1]. For each individual i, V, was drawn from

a uniform distribution in [, 1]. The other speed

coordinates were computed as V, = /1-V? sinu
and V,_ =/1-V? cosu, with u drawn from a uni-
form distribution in [0, 27]. Initial speed vectors
are thus fully aligned for v = 1, and fully random
for 1 = —1. We adopted a linear series from —1 to
+1 by steps of 0.1 (21 values).
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Overall, for each of the 24 values of roo, the
histogram of polarization was computed over a
total of 21 initial polarizations X 38 initial den-
sities = 798 initial conditions, simulating one
replication per initial condition. We verified that
repeated replications yielded the same results.
Together with the exploration of the behavioural
factors a total of 170 000 simulations were run.

Results
The reference model and its dynamics

The systematic variation of initial conditions
confirms that the radius of the orientation match-
ing area, roo, has an important influence on the
stationary dynamics of our fish model (Fig. 3,
compare with Couzin et al. 2002). One can iden-
tify two major qualitative behaviours in terms
of the group alignment parameter O,: (1) for
a small roo the group stays in the same place,
with individuals swarming or milling around the
centre of mass of the group, (2) for a large roo
individuals align with each other and adopt a
common direction, with a cruising speed close to
the individual linear speed (schooling). The hys-
teresis effect described by Couzin et al. (2002)
could be obtained by varying roo continuously
from 5 to 10 BL and back (Fig. 3). Note that the
transition between swarming and milling occurs
continuously and these two collective states
cannot be qualitatively distinguished. Milling is
in fact simply a swarming behaviour which is
constrained by the limited turning rate (curva-
ture) that controls the short-range matching of
fish headings.

The role of the individual behaviour

The emergent global behaviour should be
explained in terms of the individual behaviour.
The important factor is each individual’s dis-
tance to its most distant neighbour (1) within
a connected group. We will therefore visualize
the transitional group dynamics in terms of this
distance and alignment with these distant neigh-
bours (0,), an indicator of the long-range align-
ment of the group (Fig. 4).

Reference Model

Fig. 3. The stationary dynamics of the reference model
characterized by the empirical distribution of polariza-
tion O,. For each value of the outer radius of the zone
of orientation, roo, this distribution was computed from
798 systematically varied initial conditions (see text).
O, close to 1 corresponds to schooling behaviour, O,
below 0.5 to swarming or milling behaviour.

For a small ratio roo/roa (Fig. 4, upper panel,
roo = 2 BL) the fish always end up swarm-
ing under the dominating influence of attraction.
Starting from a small volume and any initial align-
ment (O, between 0 and 1) the group converges to
a stationary volume where attraction becomes
sufficient to balance the system's inertia (Fig. 4,
upper panel, zone a). Similarly, starting from a
somewhat larger volume (zone b), the group first
transits in a centripetal pattern where all individu-
als move toward the group centre (O, close to —1)
before converging to the same stationary volume.
Finally, when the group starts with a volume
exceeding a critical value, attraction is not suf-
ficient to prevent it from splitting into subgroups
(zone c). The path to swarming therefore passes
through a temporal accumulation of mutual attrac-
tions between neighbours that destroy any initial
alignment until it stabilizes at a stationary volume
where the mean farthest neighbour distance is just
below the attraction radius roa. In other words,
the swarming equilibrium volume is so small that
each individual is directly attracted to all others
in the group. This full connectedness between all
individuals explains the dominance of the swarm-
ing state: any neighbour ends up at a distance
below roa, with only few individuals within roo.
Hence, motor reaction is dominated by attraction;
all individuals continuously try to catch up with a
direction pointing towards the group centre. Per-
fectly aligned headings (school behaviour, O, = 1)
only represent an unstable stationary state.



422

Gautrais etal. + ANN.ZOOL.FENNICI Vol.45

109 roo=2

S 0.0

roo=4

-1.04 f g h
1

T T T T
01 0.2 05 1.0 20 5.0
Alroa

Fig. 4. Characterization of the transient dynamics
towards the stationary state for roa = 2, 4 and 19 BL
(body lengths). O, represents the mean polarization
with respect to the farthest neighbour and 1 is the mean
distance to the farthest neighbour. The arrows indicate
the initial conditions and point towards the stationary
state. For the sake of clarity only seven representative
initial conditions (out of 798 tested ones) are shown.

For a ratio roo/roa close to 1 (Fig. 4, lower
panel, roo = 19 BL) the fish always end up in
a schooling state (O, = 1) or split up (zone h).
Starting from a small initial volume (zone f), the
group first expands and then adopts a common
orientation. Starting from a somewhat larger
volume (zone g) the fish immediately adopt
this common orientation. However, it is worth
noting that the distance to the farthest neigh-
bour can remain largely superior to roa, school-
ing behaviour is therefore a truly self-organized
process based on the spatial propagation of local
interactions between neighbours, contrary to the
swarming behaviour described above.

Finally, for intermediate values of roo/roa
(Fig. 4, middle panel, roo = 4), the system is in a
bi-stable state where initial conditions in zones d
and e can lead either to schooling or to swarming
behaviour. We could not detect any pattern that

permits to predict the stationary state from the
initial conditions as characterized by the param-
eters O, and A. Though, some tendencies exist.
Starting from a small volume (zone d), high
initial alignment biases the dynamics toward
further alignment (schooling). However, starting
from a larger volume (zone e), the opposite may
occur and initially aligned states lead to swarm-
ing, whereas initially disorganised states lead to
schooling. Note that even in the latter case the
dynamics pass through the swarming or even
milling area before reaching the schooling state.
This might depend on the geometrical arrange-
ment of the individuals, in particular whether
the global shape of the group remains spherical
or tends to some shape boosting alignment. This
point has not been investigated in the current
study but merits further attention.

In summary, the ratio roo/roa crucially deter-
mines the stationary state(s) of the system. For
small ratios the fish end up in the swarming state
where each fish is within the attraction zone of
each other, while for ratios close to 1 the final
state is schooling where individuals only interact
with few neighbours. In between the system is
bi-stable where the stationary state cannot be
predicted from the initial state.

Critical behavioural factors
Blind zone

A blind rear zone of specific size is an often used
feature in fish modelling (Aoki 1982, Couzin et
al.2002). In the reference model it was set to 90°
(a = x£135°, Fig. 2a), but the global dynamics
are affected by the size of this zone (Fig. 5). An
intermediate increase (reducing o from +180°
to £120°) only increases the probability for a
group to split up, while conserving the dynamic
landscape qualitatively. But further reduction
of a (down to 90°) leads to dramatic changes,
swarming behaviour disappears completely and
the probability to split up increases tenfold or
more (Fig. 5).

The relative robustness of group behaviour
with respect to small blind rear zones can be
explained as follows: the collective dynam-
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ics rely on the spread of information about
positions and orientations of individuals. For a
given individual this information flows through
its perceived neighbours, which in turn collect
this information from their neighbours, and so
on. Hence the intensity of the information flow
depends on the global density of perceptual
links between the individuals. For a large «a,
this density varies little with a changing a (and
is further smoothed by the turning movements)
whereas it undergoes a non-linear drop if a is
greatly reduced (e.g. down to the volume ahead
for a = 90°). “Leader—Follower” behaviours can
emerge depending on whether two fish are in an
attracting or aligning distance from each other.
In the first case the follower tends to remain
within the blind rear zone of its leader, but track-
ing it efficiently and thus remaining together. In
the second case alignment of both fish also leads
to joint displacement with a constant inter-indi-
vidual distance.

However, increasing the blind zone further
(Fig. 5, lower panel) increases the probability for
a leader to completely loose contact with its rear
neighbours and to swim straight ahead. If this
happens for several local leaders the group will
split up. In the present model this happens for a
between +120° and £90° which is unrealistically
low for real fish.

Curvature

The curvature parameter k determines the speed
with which a fish can change its heading. This
parameter turned out to be the most important
factor in the present model (Fig. 6). In the refer-
ence model (Fig. 3) « was set to 0.43 rad BL™,
corresponding to a turning rate of 40° s™' for a
speed v=3 BL s,

If k is too low (Fig. 6, upper and middle
panels) fish are unable to adopt quickly the
desired direction D (r). They tend to disperse
more rapidly than the attraction can cope with.
As a consequence, the group splits up in most
cases.

Conversely, if « is set to a high value (Fig.
6, lower panel), individuals are highly reactive
to their perception and reach very easily their

0.75
0.5
0.25

0.75
0.5
0.25

0.75
0.5
0.25

15
roo

Fig. 5. The influence of a decreasing perception angle
(a) on the model’s stationary states (see Fig. 3 for the
notations). At a low value of roo the heights of the col-
umns do not add up to 1, indicating the occurrence of a
high proportion of fissions.

desired heading. In this case the system reaches
its stationary state (swarming, schooling) more
rapidly and the range of ratios roo/roa where bi-
stability occurs becomes negligible.

Noise

In a realistic system the effect of angular noise
cannot go beyond the curvature «, we there-
fore limited our exploration to values D_< 20.
The resulting dynamic landscapes (not shown)
were indistinguishable from the reference model
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Fig. 6. The influence of maximal curvature « on the
model’s stationary state (see Fig. 3 for the notations).

(Fig.3). We can therefore conclude that the
detected stationary states and their dependence
on initial conditions are barely modified by noise
in the present model.

Attraction weighting

Finally, increasing the weight of attraction 7 with
respect to alignment when computing the desired
direction D () has two effects: it increases the
range of roo/roa values for which bi-stability
occurs and shifts this range to the right (Fig. 7).
For a fixed value of the orientation zone (e.g. roo
= 4), the modulation of the attraction weight can
make the collective state switch from schooling

Fig. 7. The influence of differential weighting » between
attraction and alignment on the model's stationary
dynamics (see Fig. 3 for the notations). Low influence
of attraction (top panel) vs. high influence of attraction
(lower panel).

(7 < 1) to swarming (17 > 1) through the bi-stabil-
ity (m=1).

Factors with no effect

Alteration of the linear speed v (keeping curva-
ture k constant), and the further enlargement of
roa were found to yield the same results as the
reference case.

Discussion

The present analysis confirms the results in
Couzin et al. (2002) that there are two major col-
lective behaviours, schooling with the fish group
moving straight ahead at maximal speed and
swarming or milling where the group remains at
the same spot. The former happens when align-
ment to neighbours dominates over attraction
to them, while the latter occurs when attraction
dominates. If both behaviours have equal impor-
tance a bi-stable state can occur where the initial
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conditions determine the final collective state.
This bi-stable state signifies that the same behav-
ioural rules on the individual level can result in
multiple collective states.

The bistability has been made apparent
because relevant initial conditions (initial pack-
ing density and polarization) were systemati-
cally explored. The initial density was explored
from highest densities down to a critical lowest
density that still allows the group to remain con-
nected. It is worth noting that this critical lowest
density arises from a geometrical constraint and
depends on the group size: a larger group must
be more packed to remain connected. However,
sonar measures in open sea show that the pack-
ing densities of fish seem to be independent of
the size of the shoal (Misund 1993, Misund et
al. 2003 and references therein). Note however
that the density is in general quite heterogeneous
inside large schools and may depend on their
shape (Mogilner et al. 2003). With our model,
the final density of the school (as measured by
the mean distance to the nearest neighbour to
correct for group shape) proved indeed stable for
larger group sizes (up to N = 5000), whether the
final state belonged to swarming or schooling. In
all cases, the final density is far below the criti-
cal density for connectedness, the geometrical
constraint therefore does not play a role at steady
state. This result also shows that for large groups
the swarming shape can be stable even if the
fish do not perceive all others at the equilibrium
volume (A4 > 1).

We already mentioned that the dynamics
converge in all cases within the first 30 seconds.
However, this convergence time depends on the
linear speed (taken here as 3 BL s™') and also on
the initial packing which in turn depends on the
perception radius. To compare with biological
data these model parameters ought to be tuned
accordingly.

Note that the milling observed with the
present model is characterized by a full con-
nectedness of the group (everybody is within the
attraction zone of each other). It is not necessar-
ily of the same nature as the milling observed on
much larger scales (Parrish & Edelstein-Keshet
1999). By the way, the question of the individual
rules that might lead to a swarming like behav-
iour without splitting but where each individual

only perceives a fraction of the whole group
remains an open one. In our case, the mechanism
leading to swarming could also be replaced by
a tendency to move towards the highest local
group density, detection of each individual with
its moving direction is not mandatory. However,
reviewing the literature this seems not to be
sufficient to obtain schooling, the moving direc-
tion of neighbours must somehow be perceived
(Vicsek et al. 1995, Grégoire et al. 2003).

Instead of using fixed distance neighbour-
hood areas (ror, roo, roa) many authors rather
choose to fix the number of neighbours taken into
account (Parrish et al. 2002, Viscido et al. 2005).
Interestingly, the number fixed by Viscido et al.
(2005) in order to obtain a minimum number of
stragglers (defined as individuals that are more
than 5 BL from their nearest neighbour, which
serves as a measure of connectedness) corre-
sponds to the average number of neighbours per-
ceived by each individual in the schooling state
with a dominance of alignment over attraction
(6-12 neighbours, see Fig. 4 lower panel).

Critical behavioural parameters

Variation of the visual field a within a biologi-
cally relevant range only had a minor effect on
the observed collective dynamics (Fig. 5). The
presence of a (even rather large) blind rear zone
seems to have no particular impact on school-
ing or swarming behaviour, frequent directional
changes are sufficient for a fish to “scan” its rear
and let it have an average impact on its move-
ment. In contrast, low values of the maximum
turning rate k highly increase the risk of splitting
up, and swarming behaviour becomes impos-
sible (Fig. 6). This parameter might be under a
strong selection pressure. For example, tuna-like
swimmers seem to be optimized for high-speed
swimming in calm waters (Sfakiotakis 1999) but
they are barely capable of rapid accelerations or
turning manoeuvres. For collective behaviour to
emerge in such species, a large zone of orienta-
tion should be favoured over the attraction range,
a prediction that longs for an experimental vali-
dation. This also implies that comparative stud-
ies about schooling behaviour should be done
only between species with similar maximal «.
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Switching between different collective
states

Many fish species are capable of switching
between schooling and swarming/milling behav-
iour (Fréon and Misund 1999). Couzin et al.
(2002) explained this by a modulation of the zone
of orientation (roo) that, as we have seen (Fig. 3),
can indeed trigger such a change. However, the
proposed mechanism how roo is changed often
relies on external factors that modify the percep-
tion range (for example day/night or water turbid-
ity). Our observation that differential weighting
of attraction and orientation can also change the
collective state suggests an alternative mecha-
nism. For fixed roo = 5, changing the weight of
attraction with respect to alignment () from 0.1
to 10 and back (Fig. 7) has the same hysteresis
effect as described by Couzin et al. (2002) with
changing roo. The weight 7 can be modulated by
the animal's internal state, for example an anti-
predator behaviour might involve a large # that
increases the weight of attraction (Hamilton 1971,
Beechaam & Farnsworth 1999, Viscido & Wethey
2002, James et al. 2004) and triggers swarming or
milling behaviour, while # is small in the absence
of predators, increasing the weight of alignment
and leading to schooling behaviour.

This study only addressed the dynamics of
schooling behaviour in the absence of envi-
ronmental heterogeneities or restricting borders.
The coupling of these dynamics with environ-
mental effects (water streams, temperature gra-
dients, pollution, food abundance, population
dynamics ...) is not a trivial task and would
require further detailed and specific studies. For
example, Koltes (1985) showed that the presence
of copper can significantly alter the behavioural
parameters such as the linear speed and the
curvature. This alteration had a clear impact on
the collective behaviour towards schooling. Our
model suggests that the observed alteration of
the individual curvature can by itself explain the
shift in the collective behaviour, with or without
alteration of the linear speed.

Alternatives to individual based models

The present (Lagrangian) model describes the

change in individual behaviour (position and
heading) as a combination of deterministic (influ-
ence of neighbours) and stochastic components
that only depend on the current state of the system.
It can therefore be interpreted in the framework of
coupled Markov processes in continuous time
with a master equation governing the (probabil-
istic) behavioural transitions. In some cases (for
example spatial diffusion, see Patlak 1953 for the
first application to animal behaviour) such an indi-
vidual model can be linked to analytically more
tractable partial differential equations (PDE) that
describe population behaviour at a macroscopic
scale. However, some behavioural approxima-
tions and simplifications are necessary to obtain
these analytical expressions. In the case of fish
school models these simplifications are particu-
larly stringent, for example Vicsek et al. (1995)
worked in a closed space (toroid) in order to skip
the need for attraction, Niwa (1996) neglected
curvature constraints, and blind rear zones never
make it into a macroscopic model. The strength of
numerical explorations of (stochastic) individual
based models lies exactly in this absence of tech-
nical necessities to simplifications, all biologically
relevant features with respect to the explored
global behaviour can be incorporated. However,
in order for these numerical simulations to be as
exhaustive as the ones that can be performed with
macroscopic equations one has to go beyond the
interpretation of particular simulation runs and
extract structural properties such as bi-stability or
the conditions when individuals only perceive part
of the group rather than the whole one. One of the
ways to get there requires a systematic explora-
tion of the dynamics starting from any possible
relevant initial condition.
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