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The human brain is one of the most complex biological systems. Neuroscientists seek 
to understand the brain function through detailed analysis of neuronal excitability and 
synaptic transmission. In this study, we propose a network analysis framework to study 
the evolution of epileptic seizures. We apply a signal processing approach, derived 
from information theory, to investigate the synchronization of neuronal activities, 
which can be captured by electroencephalogram (EEG) recordings. Two network-
theoretic approaches are proposed to globally model the synchronization of the brain 
network. We observe some unique patterns related to the development of epileptic 
seizures, which can be used to illuminate the brain function governed by the epilep-
togenic process during the period before a seizure. The proposed framework can pro-
vide a global structural patterns in the brain network and may be used in the simulation 
study of dynamical systems (e.g. the brain) to predict oncoming events (e.g. seizures). 
To analyze long-term EEG recordings in the future, we discuss how the Markov-Chain 
Monte Carlo (MCMC) methodology can be applied to estimate the clique parameters. 
This MCMC framework fits very well with this work as the epileptic evolution can be 
considered to be a system with unobservable state variables and nonlinearities.

Introduction

Epilepsy can be defined as recurring seizures 
caused by sudden, brief and significant changes 
in the way the brain works (see www.epilepsy-
foundation.org). Nearly 3 million people in the 
U.S. and over 40 million people worldwide (1% 
of the population) currently suffer from epilepsy, 
which is the second most common brain disorder 
after stroke (Cockerell et al. 1996, see also www.
epilepsyfoundation.org).

Uncontrolled epilepsy poses a significant 
burden to society due to the associated healthcare 
costs. The diagnosis and treatment of epilepsy is 
complicated by the disabling aspect that seizures 
occur spontaneously and unpredictably due to 
the nature of the chaotic disorder. Part of under-
standing the mechanism of epilepsy and sei-
zure development is understanding how seizures 
evolve and progress. Although visual inspection 
of electroencephalogram (EEG) recordings can 
be used to identify the seizure onset, the presei-
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zure period, also known as seizure pre-cursor, is 
not detectable by EEG visualization (Lehnertz & 
Litt 2005). The seizure pre-cursor can be viewed 
as the abnormal brain activity preceding a sei-
zure governed by the epileptogenesis.

It was previously shown in several studies 
that the pre-seizure period may be manifested 
by spatial and temporal changes in the dynam-
ics of EEG recordings (Chaovalitwongse 2005, 
Chaovalitwongse et al. 2006, 2007, Sackellares 
et al. 2006). However, investigating both spa-
tiotemporal properties of EEG signals remains 
a difficult task, as EEG data are large-scale 
and analyzing such data requires efficient and 
sophisticated techniques.

Although the brain may have originally 
emerged as an organ with functionally dedi-
cated regions, recent evidence suggests that the 
brain evolved by preserving, extending, and re-
combining existing network components, rather 
than by generating complex structures de novo 
(Sporns & Kotter 2004, Anderson 2007). This is 
significant because it suggests that (1) the brain 
network is arranged so that the functional neural 
complexes supporting different cognitive func-
tions share many low-level neural components, 
and (2) the specific connection topology of the 
brain network may play a significant role in sei-
zure development.

One recent hypothesis in epilepsy research is 
that the temporal lobe seizure development may 
be initiated by specific connected structures in 
the brain’s cortical network (Sackellares et al. 
2006). This line of thinking is also supported by 
Sakata and Yamamori (2007) who demonstrated 
that specific connected structures are either sig-
nificantly abundant or rare in cortical networks. 
If seizures evolve in this fashion, then we should 
be able to make some specific empirical hypoth-
eses regarding the evolution of seizures that 
might be borne out by investigating the synchro-
nization between the activities in different brain 
areas, as revealed by quantitative analyses of 
EEG recordings.

The goal of this study was to test the fol-
lowing two hypotheses: (1) The brain activity 
in the orbitofrontal areas is highly correlated, 
while the activities in the temporal lobe and sub-
temporal lobe areas are highly correlated with 
their own side (left only or right only) during 

the pre-seizure period. The high correlation can 
be viewed as a recruitment operation initiated 
by an epileptogenic area through a regular com-
munication channel in the brain. Note that the 
connection of these brain areas has been a long-
standing principle in normal brain functions and 
we believe that the same principle should hold 
in the case of epilepsy as well. (2) Some brain 
regions are consistently active, which is mani-
fested by a higher degree of synchronization 
among EEG electrodes within the same region, 
during the pre-seizure state. We postulate that the 
active connection may be driven by seizure evo-
lution, regulating abnormal communications in 
the epileptogenic brain areas or vulnerable areas 
in the brain network. To test these hypotheses, 
we herein propose network-theoretical meth-
ods through a multivariate statistical analysis of 
EEGs to study the seizure development by inves-
tigating the topological structure of the brain 
connectivity network.

Background

The development of seizures can be captured by 
an EEG, which records the voltage potentials 
reflecting changes in the electrical activities of 
neural assemblies. These changes are reflected 
by wriggling lines along the time axis in a typical 
EEG recording. For this reason, EEGs have been 
the main tool for neurologists and neuroscientists 
to study epileptogenetic processes and other neu-
rological disorders. A typical electrode placement 
for intracranial EEG recordings used in our study 
is shown in Fig. 1a. An emerging view in recent 
epilepsy research suggests there are four stages 
in seizures: normal, pre-seizure, seizure onset 
and post-seizure (Litt & Echauz 2002, Iasemidis 
2003, Lehnertz & Litt 2005; Fig. 1b).

Multivariate analysis on EEG signals

In any study of the brain connectivity network, 
signal processing and data mining techniques 
are required to extract useful information buried 
in the raw EEG data. We can categorize signal 
processing techniques into two types based on 
the number of sources, univariate and multivari-



404 Chaovalitwongse et al. • ANN. ZOOL. FeNNICI Vol. 45

ate measures. Univariate measures process the 
information from a single data source, such as a 
single electrode. There are several signal proper-
ties one can extract using univariate measures 
such as power spectrum, autocorrelation, entropy, 
and divergent rates. Multivariate measures (also 
referred as spatiotemporal measures) allow one 
to determine the synchronization that commonly 
occurs among a group of sources. This is very 
important because multivariate measures can 
uniquely determine specific types of connection 
between two or more sources, and quantify-
ing the synchronization between different brain 
areas (measured by different electrodes) is cru-
cial to a greater understanding of the brain con-
nectivity network. The synchronization may be 
attributable to the brain’s anatomical, functional, 
or dynamical connectivity. In this study, the 
synchronization patterns are postulated to reflect 
the seizure evolution (epileptogenic process), 
and we shall use electrode synchronization as a 
similarity measure of EEG signals from different 
brain areas.

This is fine in theory; however there are a few 
complexity issues in calculation of multivariate 
measures. In spite of the theoretical capability of 
multivariate methods to find the common patterns 

from multiple sources, the complexity of the cal-
culation increases exponentially with the number 
of sources. Therefore, we use multivariate meas-
ures for quantifying the synchronization from 
only 2 electrodes at a time. Specifically, a simple 
signal processing used to calculate the synchroni-
zation between electrode pairs is employed in this 
study. Then we apply a data mining technique 
based on network-theoretical methods to the mul-
tivariate analysis of EEG data.

Brain synchronization

In general, statistical similarity measures can 
be categorized into two groups: linear and non-
linear dependence measures. The linear meas-
ure is mainly used for measuring a linear rela-
tionship between two or more time series. For 
example, the most commonly used measure is 
cross-correlation function, which is a standard 
method of estimating the degree of correlation 
in time domain between two time series (Knapp 
& Carter 1976, Fel’dshtein 2000). The result of 
a cross correlation function can be calculated 
at different time lags of two time series to show 
the level of redundancy at different time points. 

Fig. 1. — a: Inferior transverse views of the brain, illustrating approximate depth and subdural electrode placement 
for eeG recordings. Subdural electrode strips are placed over the left orbitofrontal (LOF), right orbitofrontal (ROF), 
left sub temporal (LST), and right sub temporal (RST) cortex. Depth electrodes are placed in the left temporal 
depth (LTD) and right temporal depth (RTD) to record hippocampus activity. — b: Twenty-second eeG recordings 
of (1) normal activity, (2) pre-seizure activity, (3) seizure onset activity, and (4) post-seizure activity from Patient 2 
obtained from 32 electrodes. each horizontal trace represents the voltage recorded from electrodes shown in a.
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Frequency coherence is another linear similar-
ity measure, which calculates the synchrony of 
activities at each frequency (Miltner et al. 1999). 
Although the information from cross-correla-
tion function and frequency coherence has been 
shown to be identical (Olivier et al. 2004), the 
similarity between two EEG signals in different 
frequency bands such as delta, theta, beta, alpha 
and gamma, is still commonly used to investigate 
EEG similarity patterns (Lachaux et al. 1999, 
Miltner et al. 1999). For example, Bartolomei et 
al. (1999) used frequency coherence measures 
to investigate the interactions between medial 
limbic structures and the neocortex during ictal 
periods (seizure onsets). In another study by 
Towle et al. (1999), the coherence pattern of cor-
tical areas from epileptic brain was investigated 
to identify a cortical epileptic system during 
interictal (normal) and ictal (seizure) periods.

Although linear measures are very useful and 
commonly used, they are insensitive to nonlinear 
coupling between signals, and non-linearity in 
neural networks. To be able to investigate more 
of the interdependence between EEG electrodes, 
nonlinear measures should be applied. Nonlinear 
measures have been widely used to determine 
the interdependence among EEG signals from 
different brain areas. For example, Arnhold et 
al. (1999) and Quyen et al. (1999) studied the 
similarity between EEG signals using nonlinear 
dynamical system approaches. They applied a 
time-delay embedding technique to reconstruct 
a trajectory of EEG in phase space and used the 
idea of generalized synchronization proposed 
by Abarbanel et al. (1992) to calculate the inter-
dependence and causal relationships of EEG 
signals.

We propose an approach to investigate and 
quantify the synchronization of the brain net-
work, specifically tailored to study the propa-
gation of epileptogenic processes. Mars et al. 
(1985) investigated this propagation, where the 
average amount of mutual information during the 
ictal period (seizure onset) was used to identify 
the focal site and study the spread of epileptic 
seizure activity. Subsequently, Palus et al. (1993) 
applied the information-theoretic approach to 
measure synchronization and identify causal 
relationships between areas in the brain to local-
ize an epileptogenic region. Here, we apply 

an information-theoretic approach, called cross-
mutual information, which can capture both 
linear and nonlinear dependences between EEG 
signals, to quantify the synchronization between 
nodes in the brain network. In order to globally 
model the brain network, we represent the brain 
synchronization network as a graph.

Graph/network representation

Modeling the brain network as a graph is not 
new. In the past decade, several studies attempted 
to use network-theoretic methods to study the 
brain network. For example, the topological rela-
tionships between brain networks and social net-
works were proposed by Sakata and Yamamori 
(2007). In an earlier study, Sporns and Kotter 
(2004) demonstrated that the brain evolved a 
highly efficient network architecture whose 
structural connectivity (or motif) is capable of 
generating a large repertoire of functional states. 
In another recent study, the brain network graph 
was investigated to verify that the re-use of 
existing neural components played a significant 
role in the evolutionary development of cogni-
tion (Anderson 2007).

Applying network/graph-theoretic methods 
to EEG signals, we can model the brain con-
nectivity/synchronization network as a complete 
graph G(V, E), where V is a set of vertices and 
E is a set of edges. Vertices (also called nodes) 
are represented by EEG electrodes (also referred 
as channels). Edges (also called arcs) are repre-
sented by the synchronization/similarity between 
two EEG electrodes whose degrees correspond 
to the edge weights. In short, a brain connec-
tivity network can then be constructed as a 
graph whose vertices are EEG electrodes and the 
weighted edges are the coupling strength of elec-
trode pairs. Every pair of vertices is connected 
by a weighted edge.

In this study, we focus on the structural 
changes in the brain connectivity network that 
may be related to the seizure evolution. The 
structural changes could be represented by con-
nectivity fractions/partitions through aggrega-
tion and segregation of the brain network. In 
this study, we propose two network-theoretic 
approaches, spectral partitioning and maximum 
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clique, to identify independent/segregated and 
clustered brain areas.

Materials and methods

Data acquisition

The EEG recordings (Table 1) were obtained 
from bilaterally, surgically implanted macro elec-
trodes in the hippocampus, temporal and frontal 
lobe cortexes of two patients who underwent pre-
surgical clinical evaluation for possible surgical 
treatment of intractable temporal lobe epilepsy. 
The recordings were obtained using a Nicolet 
BMSI 4000 recording system with amplifiers of 
an input range of 0.6 mV, sampling rate of 200 Hz 
and filters with a frequency range of a 0.5–70 Hz. 
Each recording included a total of 26 to 32 intrac-
ranial electrodes (8 subdural and 6 hippocampus 
depth electrodes for each cerebral hemisphere, 
and a strip of 4 additional electrodes if deemed 
necessary by the neurologist). The recorded EEG 
signals were digitized and stored on magnetic 
media for subsequent on-line analysis.

Network modeling

When we analyze the synchronization and model 
the brain network, we have to divide long-
term EEG recordings into non-overlapping EEG 
epochs. This is because EEG recordings are 
considered to be highly non-stationary, in which 
the EEG temporal properties lie on a very small 
scale. In other words, it is widely known that 
EEG patterns tend to appear very briefly (for less 
than 30 seconds). Examples include sharp wave 
transients, spikes, spike-wave complexes, and 
spindles. Thus a proper size of EEG epochs has 
to be used to correctly estimate the cross-mutual 

information (CMI) degrees, which can reflect on 
the level of similarity at a suitable time scale.

In this study, we choose an EEG window 
(epoch) size of 10 seconds to calculate the CMI, 
which is considered to be stationary period for 
EEG signals (Iasemidis et al. 2000, 2003). As 
mentioned in the previous section, we model the 
brain connectivity network as a graph, where 
vertices are represented by EEG electrodes and 
edges are represented by the synchronization 
between two EEG electrodes. To quantify the 
synchronization through the level of interde-
pendence, cross mutual information is used 
to measure the flow of information between 
two electrodes. The cross-mutual information 
is commonly used to quantify the information 
conveyed from one site to another site. In other 
words, it demonstrates how much information 
from electrode x was presented by electrode y 
and vice versa. It also has the capability to detect 
both linear and nonlinear dependent patterns of 
two random variables since both linear and non-
linear rules can be defined by probabilistic rela-
tionship. The cross-mutual information between 
electrodes x and y is given by

 .

If these two random variables are statically inde-
pendent, pxy(x,y) = px(x)py(y), then CMI = 0, 
which implies that there is no correlation between 
electrodes x and y. An example shown in Fig. 2c 
represents a scatter plot of an electrode pair at 
the right mesial temporal lope, RTD2 vs. RTD4, 
showing uncorrelated patterns, which have a low 
CMI value (see Fig. 2b). On the other hand (see 
Fig. 2d), a linear relationship was discovered in 
the scatter plot of the other electrode pair, also at 
the right mesial temporal lobe, RTD4 vs. RTD6. 
This kind of linear dependent pattern yields a 
high CMI value (see Fig. 2b).

Table1. eeG dataset characteristics.

Patient Gender Age Number of Seizure onset zone Duration of eeG Number of
   electrodes  recordings (days) seizures

1 Male 29 26 R hippocampus 6.07 19
2 Male 37 30 L/R hippocampus 9.88 11
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Spectral partitioning

Spectral partitioning, first developed by Fiedler 
(1973, 1975), has been successfully applied in 
several applications for the past few decades. 
One of many applications is a parallel process-
ing problem, which is to partition processors into 
two groups with the minimum cost of communi-
cation among processors. This problem can be 
trivially applied to our brain network problem, 
where we try to partition the brain network into 
two groups with the minimum cost (maximum 
synchronization) among the brain areas. Gener-
ally speaking, the spectral partitioning problem 
is used to find a cut or a group of edges which 
separate nodes into two groups and satisfy some 
specific conditions.

The problem can be formally defined as 
follows: Let the graph G(V, E) contain a set of 
edges as a cut E(A, B), whose end nodes are A 
and B. The cost of cut to separate a graph into 
group A and B is cut(A, B) = , where wij is 
the communication cost between nodes i and j.

Suppose the condition of partition is to sepa-
rate nodes in a graph into two groups with an 
equal number of nodes, i.e., |A| = |B|, we can 
formulate this problem as an integer program-
ming problem to assign each node to one of two 
classes, –1 and +1, for groups A and B, respec-
tively. To separate the graph into two balance 
groups with a minimum total cut value, we can 
formulate the problem as:

 .

This problem has been proven to be an NP-
hard problem (Garey et al. 1976, Ding et al. 
2001), which has been shown to be solvable in 
no less than non-deterministic polynomial time. 
In word, the complexity of this problem increases 
exponentially as the number of nodes increases. 
This problem can be reformulated as a continu-
ous quadratic programming problem given by

Fig. 2. — a: A 10-second segment of 3 eeG signals from the right temporal depth electrodes during normal period 
from Patient 1. — b: A comparison of cross-mutual information measured from RTD2 vs. RTD4 and RDT4 vs. 
RTD6. — c: A scatter plot of RTD2 vs. RTD4. — d: A scatter plot of RDT4 vs. RTD6.



408 Chaovalitwongse et al. • ANN. ZOOL. FeNNICI Vol. 45

 

where D is an n ¥ n diagonal matrix of total cost 
of connecting each node, and W is an n ¥ n cost 
matrix between two adjacent nodes. The matrix 
D ¥ W is known as a Laplacian matrix, which 
is positive semi-definite. From the above equa-
tion, the solution can be found by finding the 
eigenvector corresponding to the second smallest 
eigenvalue l2. Therefore, this problem is equiva-
lent to solving a linear equation: (D – W)x = lx. 
Each element of the eigenvectors corresponds to 
each node and can be used to classify nodes into 
two different groups. For example, nodes with 
positive and negative eigenvalue belong to group 
A and B, respectively.

Note the above spectral partitioning prob-
lem only considers the cost to divide nodes in 
a graph into two groups. However, in our case, 
natural clusters need to be investigated to under-
stand coupling activities or synchronization in 
the brain network. In order to make this model 
applicable to our investigation, we need to incor-
porate both inter-group (separation) and intra 
group (association factor within group) costs. 
This can be done by modifying the objective 
function. This approach, initially proposed by 
Shi and Malik (2000), is called the normalized 
cut (Ncut). The Ncut combines the inter-group 
and intra-group costs as cost ratios of two parti-
tions, given by

 ,

where W(A, B) is the cut cost between group A 
and B, W(A, A´) and W(B, B´) are the association 
costs within groups A and B, respectively. The 
solution to this problem can be obtained by solv-
ing the following linear equation:

 .

Maximum clique

The partitioning of the brain network, described 

in the previous section, may give us some 
insights into how the brain activities are segre-
gated. In this section, we hypothesize that the 
seizure evolution is initiated by one or a few 
brain areas (also known as epileptogenesis or 
focus), which try to recruit other brain areas to 
participate in the epileptogenetic process. This 
procedure should, therefore, involve repertoire 
of functional interactions as large as possible. 
The interactions among the recruited and focus 
areas that initiate seizure episodes can be viewed 
as the functional motifs of the seizure evolu-
tion. Therefore, we herein try to investigate the 
maximum number of brain areas presumably 
involved in the seizure functional motifs. The 
idea is similar to those of cortical networks, e.g., 
high complexity, short wiring, and small-world 
attributes (Sporns & Kotter 2004). We postulate 
that these motifs are in a form of the largest con-
nected components (brain areas) preceding sei-
zures. These components are in fact represented 
by the largest clique in the brain network.

We can model this problem as a maximum 
clique problem, where a group of brain areas 
(electrodes) participating in the seizure evolu-
tion can be discovered by searching the maxi-
mum number of nodes that are strongly coupled 
together into a complete subgraph of G0(V, E). 
The maximum clique problem has also been 
long known as a NP-hard problem (Pardalos & 
Xue 1992). We note that the brain network con-
structed from the CMI matrix forms a complete 
graph, in which each node has a link to every 
node. In order to determine if one node is syn-
chronized with the other node, a threshold value 
is used to remove an edge with the CMI value 
lower than the threshold value. The removed 
edges are considered to represent an insignificant 
degree of synchronization (or no correlation).

The maximum clique problem can be for-
mally defined as follows. Let G(V, E) be an 
undirected graph where V = {1, …, n} is the 
set of vertices (nodes), and E denotes the set of 
edges. Assume that there are no parallel edges 
(i.e., more than 2 direct edges connecting the 
same pair of vertices) in G. Denote an edge join-
ing vertex i and j by (i, j). We define a clique of 
G as a subset C of vertices with the property that 
every pair of vertices in C is connected by an 
edge; that is, C is a clique if the subgraph G(C) 
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induced by C is complete. Then, the maximum 
clique problem is the problem of finding a clique 
set C of maximal cardinality (size) |C|. The 
maximum clique problem can be represented in 
many equivalent formulations (e.g., an integer 
programming problem, a continuous global opti-
mization problem, and an indefinite quadratic 
programming). Here, we represent it in a simple 
integer programming form given by

	 ,

where xi is a binary variable indicating if elec-
trode i is a member of the maximum clique. In 
order to find the maximum clique in the brain 
network, we apply an exact algorithm proposed 
by Carraghan and Pardalos (1990). This method 
works well in our case because the number of 
nodes (electrodes) in our study is modest.

Results

The spectral partitioning approach was applied 
to Patient 1, who had the epileptogenic area on 
the right mesial temporal lobe. We investigated 
structural patterns of the brain synchronization 
through local (partitioned) activity in each brain 
area during the period preceding a seizure. The 
maximum clique approach was applied to Patient 
2, who also had bifocal epileptogenic areas on 
both left and right mesial temporal lobes. We 
investigated the clique structure of long-term 
(3 hours) periods of EEG recordings before and 
after a seizure.

Spectral partitioning

In the spectral partitioning procedure, we applied 
the normalized cut to partition graph into two 
natural partitions (clusters), in which two groups 
of electrodes can be separated into two highly 
synchronized groups. For visualization purposes, 
a 10-second segment of the similarity matrix 
(W) can be represented by a two-dimensional 
bitmap (see Fig. 3a and b). Note that this matrix 
is symmetric because the mutual information 

measure has no coupling direction. In each row 
and column of this bitmap, the color represents 
the synchronization level. Note that we will 
ignore the diagonal of the matrix because we can 
always find a very high level of self synchroniza-
tion.

After applying the normalized cut, we calcu-
lated an eigenvector corresponding to the second 
smallest eigenvalue. Subsequently, we separated 
electrodes into two groups with the minimum cut 
or separation with minimum cost by applying 
the threshold value at 0. Using the eigenvector 
(see Fig. 3c), electrodes were separated into two 
clusters (see the boxes in Fig. 3a). In Fig. 3, it is 
easy to observe a clear separation of these two 
clusters through the value of the eigenvector, in 
which a sharp transient from R(S)T4 to L(O)T1 
is used as a separating point. The first group of 
synchronized electrodes is from L(S)T, L(T)D, 
R(S)T and R(T)D areas. The second group is 
from L(O)F and R(O)F areas. After the first iter-
ation, it is clear that the synchronization in the 
LD-LT-RD-RT cluster is not uniform throughout 
all electrodes in the cluster. Therefore, we conse-
quently performed another iteration of spectral 
partitioning on the LD-LT-RD-RT cluster to find 
highly synchronized groups of electrodes within 
the cluster. This procedure can be viewed as 
a hierarchical clustering. After rearranging the 
electrodes based on the synchronization level, 
we found two sub-clusters of electrodes in the 
bitmap (see Fig. 3b). The value of the eigen-
vector indicates that by applying the threshold 
of 0 there are two sub-clusters within the LD-
LT-RD-RT cluster (Fig. 3d). The LD-LT-RD-
RT cluster was separated into two sub-clusters: 
LD-LT and RD-RT. This observation suggests 
that there exists a highly synchronized pattern 
in the same side of temporal lobe as well as in 
the entire orbitofrontal area. This finding can be 
considered as a proof of concept that the seizure 
evolution also follows a regular communication 
pattern in the brain network.

Maximum clique

As mentioned earlier, the idea of applying the 
maximum clique technique is different from the 
one using the spectral partitioning approach as 
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we are only interested in the most highly syn-
chronized group of electrodes in the brain net-
work. We analyzed 3 epochs of 3-hour EEG 
recordings, 2 hours before and 1 hour after a 
seizure, from Patient 2 who had the epilep-
togenic areas on both right and left mesial tem-
poral lobes (Figs. 4 and 5). During the period 
before the seizure onset, a pattern where all 
the LD electrodes were consistently selected to 
be in the maximum clique was visible (Figs. 4 
and 5). During the seizure onset, the size of the 
maximum clique increases drastically. This is 
very intuitive because, in temporal lobe epilepsy, 
all of the brain areas are highly synchronized. 
We visually inspected the raw EEG recordings 
before and during the seizure onsets and found 
a similar semiological pattern of the seizure 
onset electrodes from the L(T)D areas initi-
ated a highly organized rhythmic patterns and 
the patterns started to propagate throughout all 
the brain areas. We initially speculated that the 
epileptogenic areas could be the ones that are 
highly synchronized long before a seizure onset. 

In the previous case, we observed that the L(T)D 
electrodes are the ones that started the seizure 
evolution. However, in a further investigation of 
EEG recordings from the same patient, we found 
some contrasting results. The electrode selection 
pattern of the maximum clique demonstrated a 
very highly synchronized group of electrodes 
in both left and right orbitofrontal areas during 
the 2-hour period preceding the seizure (Fig. 6). 
After visual inspection on the raw EEG record-
ings, this seizure was initiated by the R(T)D area. 
Generally, it is known that the orbitofrontal areas 
communicate with each other more than other 
parts of the brain. This has led us to the conclu-
sion that the brain areas that are selected to be 
in the maximum clique are the vulnerable brain 
areas, rather than the epileptogenic areas. In 
other words, the brain area(s) that are highly syn-
chronized could be governed or manipulated by 
the epileptogenic areas so that they continuously 
show strong neuronal communication through 
the synchronization of EEG signals (measured 
by cross-mutual information).

Fig. 3. — a: Similarity matrices after the first iteration of the spectral partitioning procedure. — b: Similarity matrices 
after the second iteration of the spectral partitioning procedure. — c: eigenvector corresponding to the second 
smallest eigenvalue calculated when applying the spectral partitioning procedure to separate the brain network into 
2 partitions (clusters). — d: eigenvector corresponding to the second smallest eigenvalue calculated when applying 
the spectral partitioning procedure to separate the brain network into 3 partitions (clusters). Note that there are 3 
partitions (clusters) in the brain network: LD-LT, RD-RT, and LF-RF. This confirms that the seizure evolution also 
utilizes the same network of other brain functions.
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Fig. 5. electrode selection 
of the maximum clique 
in the brain network over 
a 3-hour period (2 hours 
before and 1 hour after a 
subsequent seizure after 
the seizure shown in Fig. 
4). The black area repre-
sents the selected elec-
trodes in the maximum 
clique set. Note that the 
activity pattern in the brain 
network is similar to that 
in Fig. 4. The brain also 
manifested a very high 
connectivity in the LD area 
preceding the seizure.

Fig. 4. electrode selection 
of the maximum clique 
in the brain network over 
a 3-hour period (2 hours 
before and 1 hour after a 
seizure). The black area 
represents the selected 
electrodes in the maxi-
mum clique set. Note that 
the LD area tends to be 
very active during the 2-
hour period before the 
seizure.

Implications of the results

In normal brain functions, the orbitofrontal areas 
(both left and right) of the brain are highly syn-
chronized active most of the time as it is consid-
ered to be the brain’s executive function, and the 
temporal lobe areas are separated into left and 
right cortical hemispheres that work independ-
ently from each other. We hypothesized that this 
operation in the brain should be applied to the 
epileptic brains, even in the pre-seizure period. 
As we predicted, from the spectral partitioning 
results, both left and right orbitofrontal areas 
were also highly synchronized and active as well 
as right and left temporal lobe areas during the 
pre-seizure state. This suggests that the epilep-

togenetic processes slowly develop themselves 
through a regular communication channel in the 
brain network, rather than abruptly disrupt, col-
lapse, or change the way brains communicate. 
From this observation, we postulate that this 
phenomenon may be a reflection of neuronal 
recruitment in seizure evolution. This observa-
tion confirms our first hypothesis. In addition, 
we found that nodes in the brain network are 
clustered during the seizure evolution.

Most brain areas seem to be communicating 
with their physiological neighbors during the 
process. The key process of seizure evolution 
could be the step where the epileptogenic area(s) 
govern or manipulate the other vulnerable or 
easily synchronized brain areas to communicate 
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with their neighbors. This can be viewed as a 
recruitment of other brain areas done by the 
epileptogenic area(s). In most cases, the recruit-
ment of seizure development should start with a 
weaker group, which in our case is represented 
by a vulnerable brain area. After enough neurons 
have been recruited, the disorders of epilep-
tic brains spread out abnormal functions from 
than localized areas of cortex or other vulner-
able areas throughout the cortical networks and 
the entire brain network. This phenomenon was 
shown by the results of our maximum clique 
approach, which confirms our second hypoth-
esis. In addition, a different type of maximum 
clique patterns may be useful in the identifica-
tion of incoming seizures. This study suggests 
that, in the future, this framework may be used 
as a tool to provide practical seizure interven-
tions. For example, one can locate and stimulate 
the brain areas that seem to be vulnerable to the 
seizure evolution by electrical pulses through 
the monitoring process of the maximum clique. 
This will drastically reduce the risk of seizure to 
epilepsy patients.

Discussion and future work

We attempted to study seizure evolution by 
investigating some neuronal interactions among 
different brain areas. Analyzing multidimen-
sional time series data like multichannel EEG 
recordings is a very complex process. The study 

of the brain network needs to involve the neu-
ronal activities from not only a single source 
or a small group of sources, but also the entire 
brain network. Here we applied the cross-mutual 
information technique, a measure widely used in 
the information theory, to capture the neuronal 
interactions through the brain’s synchronization 
patterns. Then we modeled the global interac-
tions using network/graph-theoretic approaches, 
spectral partitioning and maximum clique. These 
approaches are used to generalize the brain net-
work investigation to capture synchronization 
patterns among different sources (brain areas). 
The idea of analyzing EEG recordings from sev-
eral sources (multiple electrodes) is very crucial 
since the knowledge from local information (i.e., 
single electrode) is very limited. In our future 
study, we plan to incorporate the knowledge 
of general brain communication in the brain 
network. For example, Anderson (2007) dem-
onstrated the evolution of cognitive function 
through quantitative analyses of fMRI data.

The proposed framework can provide global 
structural patterns in the brain network and may 
be used in the simulation study of dynamical 
systems (like the brain) to predict oncoming 
events (like seizures). For example, an ON/OFF 
pattern of electrode selection in the maximum 
clique over one period of time can be modeled 
as a binary observation in a discrete state in a 
Markov model, which can be used to simulate 
the seizure evolution in the brain. In addition, 
the number of electrodes in the maximum clique 
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Fig. 6. electrode selection 
of the maximum clique 
in the brain network over 
a 3-hour period (2 hours 
before and 1 hour after 
another seizure far away 
from the ones shown 
in Figs. 4 and 5). The 
black area represents the 
selected electrodes in the 
maximum clique set. Note 
that the activity pattern in 
the brain network is very 
different; a high degree of 
connectivity in the orbito-
frontal areas (both left and 
right) preceding the sei-
zure is apparent.
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can be used to estimate the minimum number 
of features and explain dynamical models or 
the parameters in time series regression. Note 
that the proposed network model represents an 
epileptic brain as a graph, where there exist sev-
eral efficient algorithms (e.g., maximum clique, 
shortest path) for finding special structure of the 
graph. This idea has enabled us, computation-
ally and empirically, to study the evolution of 
the brain as a whole. The Monte-Carlo Markov 
Chain (MCMC) framework may be applicable 
in our future study on long term EEG analy-
sis. The MCMC framework has been shown 
very effective in data mining research (Andrieu 
et al. 2003). It can be used to estimate the 
graph or clique parameters in epileptic proc-
esses from EEG recordings. Since long term 
EEG recordings are very massive, most simu-
lation techniques are not scalable enough to 
investigate large-scale multivariate time series 
like EEGs. The use of MCMC makes it pos-
sible to approximate the brain structure param-
eters over time. More importantly, the MCMC 
framework can also be extended to the analysis 
of multi-channel EEGs by generating new EEG 
data points while exploring the data sequences 
using a Markov chain mechanism. In addition, 
we can integrate the MCMC framework with a 
Bayesian approach. This can be implemented 
in on-line simulation-based brain clique estima-
tion scheme, which employs sequential sam-
pling, electrode selection (maximum clique), and 
MCMC moves. Although the implementation 
of this MCMC framework remains to be further 
investigated, we expect that this framework will 
be very fast and efficient.
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