Arterial vascularization in the giraffe brain

Hieronim Frąckowiak* & Hubert Jakubowski**

Department of Anatomy of Animals, Agriculture University of Poznan, Wojska Polskiego 71c, PL-60-625 Poznań, Poland (e-mails: *hierofro@au.poznan.pl, **hu_jakubowski@wp.pl)

Received 16 Mar. 2007, revised version received 18 Oct. 2007, accepted 30 Oct. 2007

The aim of this study was to analyze the system of arteries in the brain of the giraffe, including the arterial circle of the brain, its branches and junctions, as well as individual variation of the vessels. Analyses were performed on postmortem material of 12 heads of giraffes obtained from Polish zoological gardens. The age of the examined animals ranged from 1.5 to 12 years. Moreover, arteries of one fetus aged approximately 10 months were also analyzed. Arteries of the heads were injected with latex and vinyl superchloride dissolved in acetone. In the giraffe, similarly as in other ruminant species, obliteration of the intracranial segment of the internal carotid artery was observed, together with the presence in the cranial cavity of the rostral epidural rete mirabile, from which the preserved intracranial segment of the internal carotid artery exteriorizes. The rostral cerebral artery of the brain and the caudal communicating artery, participating in the formation of the arterial circle of the brain, are formed by segments of the terminal intracranial part of the internal carotid artery. The rostral cerebral artery of the brain and the caudal communicating artery, participating in the formation of the arterial circle of the brain, are formed by segments of the terminal intracranial part of the internal carotid artery. In the giraffe branches of the arterial circle of the brain included: the internal ethmoidal artery, the middle cerebral artery, the rostral choroid artery, the caudal cerebral artery, the rostral cerebellar artery and the caudal cerebellar artery. It was shown that the basilar artery was thin and could not participate in the blood supply for the brain. On the basis of the conducted analysis it was found that in the giraffe the arterial circle of the brain is supplied with blood mainly by the maxillary artery.

Introduction

The description of the system of arteries in the brain of the giraffe, *Giraffa camelopardalis*, fills another gap in comparative studies on the system of arteries of the brain in even-toed ungulates (Artiodactyla) by the inclusion of a representative of the Giraffidae family from the suborder Ruminantia. Some aspects of the vascular system in the giraffe were analyzed by Goetz (1955), and Goetz and Keen (1957), while arteries of the head in this species were described by Frąckowiak and Godynicki (1979).

Study of the arterial pattern in the giraffe brain and connections of these vessels may be useful in the interpretation of results of experiments and discussion about blood supply in this area of the central nervous system. Features of the vascular system are also useful in designing taxonomic classification based on the comparison of many features of organisms (Shoshani & McKenna 1998).
The aim of this study was to characterize the system of arteries in the brain of the giraffe, including the arterial circle of the brain, its branches and junctions, as well as individual variation within the analyzed vascular area. Features that might be useful in taxonomy were also included.

Material and methods

Analyses were conducted on 12 heads of giraffes donated by the Wielkopolska Zoological Park in Poznań and the Zoological Garden in Płock. The examined animals were between 1.5 and 12 years of age, while one giraffe foetus showed intrauterine age of approximately 10 months. Arteries in the heads were filled with latex and stained vinyl superchloride dissolved in acetone, by injections via the two common carotid arteries. Corrosion casts were prepared from ten heads, while two heads, the arteries of which were filled with latex, were prepared manually. The course, segmentation, junctions and location of vessels in relation to the bones of the skull were examined in all specimens. The topography of arteries in relation to the brain was investigated on latex specimens. Nomina Anatomica Veterinaria (1994) was used in the nomenclature of vessels.

Results

In the giraffe, arteries supplying the brain branch off the arterial circle of the brain, formed by segmentation of the terminal intracranial part of the internal carotid artery.

During ontogenesis the internal carotid artery undergoes far-reaching transformations, leading to complete obliteration of its intracranial segment and, as a consequence, to loss of junction with the common carotid artery. The preserved intracranial segment of the internal carotid artery was surrounded by dense arteries of the rostral epidural rete mirabile (the intraretal segment) and, then, as a supraretal segment it projected from the rete and underwent final segmentation into vessels forming the arterial circle of the brain. Terminal parts of the intraretal segment of the internal carotid artery were anastomosed via the caudal intercarotid artery.

Bilateral rostral cerebral arteries of the brain from the anterio-lateral side, and caudal communicating arteries from the postero-lateral side together with the basilar artery formed the arterial circle of the brain.

The rostral epidural rete mirabile (Fig. 1) was supplied mainly by the rostral branches branching off the maxillary artery and the caudal branch to the rostral epidural rete mirabile. Moreover, a thin condylar artery branching off the occipital artery joined the rete.

In the examined giraffes, the shape of the arterial circle of the brain, in spite of individual differences (Fig. 2), was almost triangular.

Branches to individual brain structures stemmed off from segments of the arterial circle of the brain.

A single rostral choroid artery branched off the initial segment of the rostral cerebral artery. Two choroid rostral arteries in one giraffe and a unilateral one in two giraffes represented vascular variations. Also, in one specimen the right rostral choroid artery of the brain branched off the middle artery of the brain.

The middle cerebral artery was the widest branch of the central segment in the rostral cerebral artery and, in parallel, in the entire arterial circle of the brain. A double middle cerebral artery was found on the left hand side in two giraffes and bilaterally in one giraffe.

The internal ethmoidal artery most frequently branched off the terminal segment of the rostral cerebral artery and, then, it ramified into numerous arteries located in the olfactory fossa of the ethmoid bone, with which the external ethmoid artery, penetrating via the ethmoid foramen, also communicated.

Bilateral rostral cerebral arteries were anastomosed by the rostral communicating artery, which was located rostrally from the decussation of optic nerves and contributed to the rostral closure of the arterial circle of the brain. Vascular variability included two or three vessels, varying in course and diameter.

The caudal communicating artery, limiting the caudo-lateral segment of the arterial circle of the brain, was characterized by a variable shape and course (Fig. 2).
Fig. 1. Ventral view of the cerebral base in the giraffe. — a: adult brain, — b: fetal brain. 1: rostral epidural rete mirabile, 2: rostral cerebellar artery, 3: basilar artery, 4: caudal cerebellar artery, 5: medulla oblongata branches, 6: ventral spinal artery, 7: “island” shape formation in the basilar artery.

Fig. 2. Variations of the arterial circle of the brain (a–j). 1: rostral cerebral artery (1a: terminal segment, 1b: middle segment, 1c: first segment), 2: internal ethmoidal artery, 3: middle cerebral artery, 4: rostral choroid artery, 5: rostral communicating artery, 6: internal carotid artery, 7: caudal communicating artery, 8: caudal cerebral artery, 9: caudal choroid artery, 10: rostral cerebellar artery, 11: basilar artery, 12: branches to the pons, 13: caudal cerebellar artery, 14: medulla oblongata branches.
The caudal cerebral artery was the strongest branch of the caudal communicating artery. As a vascular variation, a double caudal artery of the brain was found unilaterally in two animals.

The caudal choroid artery represented another branch of the caudal cerebral artery and in the examined animals a single or double vessels were observed. The method of branching of the caudal choroid artery from the caudal communicating artery showed asymmetry of the branching site. The diameter of the caudal choroid artery in the examined animals varied.

The rostral cerebellar artery branched off the caudal communicating artery near the place of junction of the caudal communicating artery with the basilar artery. It exhibited a considerable asymmetry in the site of branching and in the number of branches. Vascular variations included a double rostral cerebellar artery found bilaterally in four animals and only on the right hand side in one animal. The branching off of the rostral cerebellar artery from the basilar artery was observed in two giraffes. In the vicinity of the site of branching off of the rostral cerebellar artery numerous small vessels were found.

The bilateral caudal communicating arteries were anastomosed by the communicating branch of the arterial circle of the brain, which joined the arterial circle of the brain opposite to the site of branching off of rostral cerebellar arteries.

The basilar artery was located in the ventral median fissure of the medulla oblongata and it anastomosed rostrally with caudal communicating arteries in the vicinity of the anterior margin of the pons. The diameter of the basilar artery varied and its lumen decreased caudally. A vascular island was found in the course of the basilar artery in the fetus (Fig. 1b).

The caudal cerebellar artery and branches to the pons and the medulla oblongata constituted ramifications of the basilar artery.

Among branches to the pons, bilaterally in one and unilaterally in two giraffes, a single, much wider artery could be distinguished, which reached nasal parts of the cerebellum.

The caudal cerebellar artery was the widest ramus of the basilar artery; it branched off the caudal part of the pons and continued to run laterally and dorsally. In all specimens the caudal cerebellar artery showed asymmetry in the method of branching off and a slight asymmetry in diameter. An additional caudal cerebellar artery was found bilaterally in one and unilaterally in two specimens. Caudally, thin and numerous branches to the medulla oblongata branch off the basilar artery starting from the site of ramification of the caudal cerebellar artery. The pattern of ramification to the medulla oblongata was asymmetric.

Discussion

The brain in the giraffe, similarly as in other species, is supplied by vessels branching off the arterial circle of the brain, which forms rami of the terminal segmentation in the internal carotid artery, anastomosed with the basilar artery. The internal carotid artery in the giraffe, similarly as in other ruminants (Godynicki & Frąckowiak 1979, Frąckowiak 2003), undergoes partial obliteration during ontogenesis. A reduction of the intracranial segment of the internal carotid artery results in a situation where blood reaches the brain from the maxillary artery via vessels of the rostral epidural rete mirabile. In the giraffe, rostral branches and the caudal branch supplying blood from the maxillary artery anastomose with the rostral epidural rete mirabile (Godynicki & Frąckowiak 1979, Frąckowiak 2003). Moreover, in the giraffe the condylar artery branching off the occipital artery anastomoses with the rostral epidural rete mirabile (Godynicki & Frąckowiak 1979). The branch of the condylar artery to the rostral epidural rete mirabile found in the giraffe was also observed in animals from the Cervidae family and in the eland from the Bovidae family (Godynicki & Frąckowiak 1979, Frąckowiak 2003). Taking into consideration the data contained in the study by Scott and Janis (1993) it may be assumed that it is another morphological piece of evidence confirming close relation of the two families to the family Giraffidae.

In the giraffe, similarly as in other Artiodac-tyla (Godynicki & Frąckowiak 1979, Frąckowiak 2003) the internal carotid artery preserves the intracranial segment, which is encircled by dense vessels of the rostral epidural rete mirabile (the...
intraretal segment), and subsequently it emerges from the rete as a supraretal segment and undergoes terminal segmentation into vessels forming the arterial circle of the brain.

Terminal parts of the intraretal segment of the internal carotid artery are joined by the caudal intercarotid artery.

This artery was described in the cat by Hürlimann (1913), Martinez (1965) and Klein (1980), while in the dog by Habermehl (1973). In species from the order of Perissodactyla the caudal intercarotid artery was described by Frąckowiak and Giejdasz (1998), Jenke (1919), Barone and Schafer (1952–1953), Rösslein (1987), and Nanda and Getty (1975).

Following the study by Simoens et al. (1978–1979) and in accordance with Nomina Anatomica Veterinaria (1994), three segments are distinguished in the course of the rostral cerebral artery in the giraffe, including the first, the middle and the terminal segment (Fig. 2).

In some studies the nomenclature concerning the rostral cerebral artery differs from the guidelines contained in Nomina Anatomica Veterinaria (1994).

An original view in this respect was presented by Sisson and Grossman (1953) in the case of cattle, and by Shoshani et al. (2006) in the elephant, who denoted the first segment of the rostral cerebral artery as the internal carotid artery. Among the described vascular variations a special case may involve the absence of the first segment of the rostral cerebral artery in humans (Lippert 1969).

In some studies the terminal segment of the rostral cerebral artery was termed the marginal artery (Jabłoński & Wiland 1973, König 1979, Brudnicki 2000).

The rostral communicating artery in the giraffe anastomosed bilaterally with rostral cerebral arteries, contributing to closure of the arterial circle of the brain. A complete absence of the nasal communicating artery in the cat was reported by Kamijyo and Garcia (1975) and Hürlimann (1913), while in the pig, cattle and the horse it was documented by Gillilan (1974).

The rostral choroid artery — the first ramus of the rostral cerebral artery in vascular variations — was formed by two vessels. A similar vascular variation in animals from the Equidae family was described by Frąckowiak and Giejdasz (1998). In the tapir and in the elephant this artery represents a branch of the caudal communicating artery (Frąckowiak & Giejdasz 1998, Shoshani et al. 2006).

The middle cerebral artery in vascular variations was formed by two vessels branching off the rostral cerebral artery.

A double middle cerebral artery was observed unilaterally or bilaterally in the horse (Jenke 1919, Rösslein 1987) and in odd-toed ungulates (Frąckowiak & Giejdasz 1998). Similar variation was described in the silver fox (Wiland 1991), in the pig and the wild boar (Wiland & Malinfski 1968, Gillilan 1974, Wiland & Brudnicki 1984, Jabłoński et al. 1989), in the hare and coypu (Wiland & Brudnicki 1984), in the rabbit (Wiland & Malinfski 1968), in the roe deer (Godynicki & Wiland 1971), in the elk deer (Jabłoński et al. 1999) and in the European bison (Węgrzyn et al. 1983).

The caudal communicating artery joins the internal carotid artery with the basilar artery. In the rat, in the posterio-lateral part of the arterial circle of the brain Brown (1966) and Moffat (1962) distinguished the caudal communicating artery, branching off the internal carotid artery, and the caudal cerebral artery, representing an extension of the basilar artery. In the horse Jenke (1919) described the caudal communicating artery as the caudal communicating branch of the internal carotid artery. Rösslein (1987) denoted this vessel in the horse as the caudal branch of the arterial circle of the brain.

Within vascular variations in the giraffe, the caudal cerebral artery, the first and widest branch of the caudal communicating artery, was found in the form of two arteries and showed asymmetry of the branching sites. Multiple caudal cerebral arteries were also described in the chinchilla (Roskosz et al. 1988), in the sheep (Jabłoński & Wiland 1973), in the roe deer and deer (Godyn-
In the giraffe the arterial circle of the brain is
Conclusions
variation in the diameter of the basilar artery.

Baldwin and Bell, F. R. 1963b: The anatomy of the

cerebral circulation of the sheep and ox. The dynamic
distribution of the blood supplied by the carotid and
vertebral arteries to cranial regions. — J. Anat. London

Baldwin, B. A. & Bell, F. R. 1963c: The effect on blood pres-
sure in the sheep and calf of clamping some of the ar-
teries contributing to the cephalic circulation. — J. Physiol.
167: 463–476.

Barone, R. & Schafer, H. 1952–1953: L’irrigation artérielle

Brenner, J. 1977: Angioarchitektonik der medula oblongata

Brown, J. O. 1966: The morphology of circular arteriosus

Brudnicki, W. 2000: Basilar arteries of the brain in domestic

goat (Capra hircus L.). — Electronic Journal of Polish
Agricultural Universities, Veterinary Medicine 3(1),

Frąckowiak, H. 2003: Magistrale tętnice głowy u niektórych

rzędów ssaków. — Roczniki AR Poznań, dissertations
336.

Frąckowiak, H. & Godynicki, S. 1979: Tętnice głowy zaryfa,

Frąckowiak, H. & Godynicki, S. 2003: Brain basal arter-
ies in various species of Felidae. — Pol. J. Vet. Sci. 6:

Gillilan, L. A. 1974: Blood supply to brains of ungulates
with and without a rete mirabile caroticum. — J. Neu.

Godynicki, S. & Wiland, C. 1970: Tętnice podstawy

Godynicki, S. & Wiland, C. 1971: Tętnice podstawy

Godynicki, S. & Frąckowiak, H. 1979: Arterial branches sup-
plying the rostral and caudal rete mirabile in artiodac-

Goetz, R. H. & Keen, E. N. 1957: Some aspects of the cardio-
vascular system in the giraffe. — Angiology 8: 542–564.

Goetz, R. H. 1955: Preliminary observations on the circu-
lation in the giraffe. — Trans. Am. Coll. Cardiol. 5:
239–248.

Habermehl, K.-H. 1973: Zur Topographie der Gehirngefäße

Hürlimann, R. 1913: Die arteriellen Kopfgefäße der Katze.

Jabloński, R. 1975: Zmienność tętnic podstawy mózgowia
u szczura laboratoryjnego. — Prace Wydz. Nauk Przy-

double caudal cerebellar arteries were

described in Equidae (Frąckowiak & Giejdasz
1998), in Felidae (Frąckowiak & Godynicki
1979), as well as in odd-toed ungulates (Frąckowiak &

Nomenclature concerning the caudal com-
municating artery of the brain also varies. In the
horse Jenke (1919) called this vessel the caudal
communicating branch of the internal carotid
artery, while Rösslein (1987) reported it as the
caudal branch of the arterial circle of the brain.

The caudal choroid artery is another branch
of the caudal communicating artery, in which
reported vascular variations include the pre-

References

1. In the giraffe the arterial circle of the brain is
supplied mainly by the maxillary artery via
the rostral epidural rete mirabile.

2. In the giraffe, similarly as in Cervidae and
Bovidae, the rostral epidural rete mirabile is
anastomosed with the ramus branching off
the condylar artery.

3. In the giraffe arteries branching off the arte-
rnal circle of the brain exhibit vascular varia-
tions and asymmetry.

The diameter of the basilar artery in the
giraffe, similarly as in other even-toed ungulates,
varies and decreases caudally. Baldwin and Bell
(1963a) described in Equidae (Frąckowiak &
Giejdasz 1998), in the rat (Jabloński 1975), in the
guinea pig (Brenner 1977), in the Canadian beaver
(Pilleri 1983), in the horse (Rösslein 1987) and
in other odd-toed ungulates (Frąckowiak & Gie-

described in Equidae (Frąckowiak & Giejdasz
1998), in Felidae (Frąckowiak & Godynicki
2003), in the rat (Jabloński 1975), in the guinea
pig (Brenner 1977), in the Canadian beaver
(Pilleri 1983), in the horse (Rösslein 1987) and
in other odd-toed ungulates (Frąckowiak & Gie-

The rostral cerebellar artery is represented by
one or two vessels, which branch off the caudal
communicating artery and — as a vascular varia-
tion — off the basilar artery.

The even caudal cerebellar artery is the main
branch of the basilar artery and the vascular vari-
atious of it include the uni- or bilateral presence
of a double caudal cerebellar artery.

Double caudal cerebellar arteries were
described in Equidae (Frąckowiak & Giejdasz
1998), in Felidae (Frąckowiak & Godynicki
2003), in the rat (Jabloński 1975), in the guinea
pig (Brenner 1977), in the Canadian beaver
(Pilleri 1983), in the horse (Rösslein 1987) and
in other odd-toed ungulates (Frąckowiak & Gie-

described in Equidae (Frąckowiak & Giejdasz
1998), in Felidae (Frąckowiak & Godynicki
2003), in the rat (Jabloński 1975), in the guinea
pig (Brenner 1977), in the Canadian beaver
(Pilleri 1983), in the horse (Rösslein 1987) and
in other odd-toed ungulates (Frąckowiak & Gie-

The diameter of the basilar artery in the
giraffe, similarly as in other even-toed ungulates,
varies and decreases caudally. Baldwin and Bell
(1963a, 1963b, 1963c) in their experiments on the
blood flow in the sheep and cattle showed variation
in the diameter of the basilar artery.

Conclusions