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Red wood ant (Formica rufa group) mounds release high amounts of carbon dioxide 
(CO2). As red wood ants and other invertebrates living in mounds are poikilothermal 
organisms, their metabolism and therefore CO2 emissions are affected by changes in 
temperature. Thus, seasonal or diurnal changes in air temperature could affect CO2 
emissions from mounds. We found that seasonal mound CO2 emissions and air temper-
ature were correlated, both peaking in mid-summer. In contrast, diurnal CO2 emissions 
and air temperature were inversely correlated, as we observed highest C fluxes during 
the night when air temperature was lowest. This CO2 emission pattern can likely 
be explained by higher metabolic rates of ants resulting from their clustering, and 
increased numbers of ants in the mound when outside air temperature drops at night. 
Changes in microbial decomposition of mound organic matter or thermal convection 
of warm CO2-rich mound air to the colder surface at night likely do not play a major 
role in the diurnal C fluxes observed in our study.

Introduction

Red wood ants (Formica rufa group) are com-
monly found in many European conifer and 
mixed conifer–hardwood forests (e.g., Gösswald 
1989a, 1989b). Because of their wide occurrence, 

this group of ants has been the focus of extensive 
research on their social structure (e.g., Crozier & 
Pamilo 1996, Pamilo et al. 1997), geographical 
distribution and density (e.g., Kissling 1985), 
population dynamics and behavior (Klimetzek 
1981), and their impact on biodiversity (Laakso 



284 Risch et al. • ANN. ZOOL. FENNICI Vol. 42

& Setälä 1997, 2000, Hawes et al. 2002). Even 
though the number of red wood ant mounds per 
hectare can be high (up to 18 mounds ha–1) in 
certain forest types (Raignier 1948, Ceballos 
& Ronchetti 1965, Gris & Cherix 1977, Cherix 
& Bourne 1980), only recently their potential 
impact on soil carbon (C) and nutrient dynamics 
and CO2 emissions has gained increased atten-
tion (Frouz et al. 1997, Lenoir et al. 2001, Risch 
et al. 2005).

Carbon and nutrient concentrations of mound 
material are higher than those of the forest floor 
and mineral soil (Frouz et al. 1997, Laakso 
& Setälä 1998, Lenoir et al. 1999, Risch et 
al. 2005), leading to increases in spatial het-
erogeneity of soil C and nutrients in ecosystems 
where these ants are found (Kristiansen & Ame-
lung 2001). Red wood ant mounds were also 
reported to be “hot spots” for C emissions, with 
CO2 originating from ants and other invertebrate 
respiration (Risch et al. 2005), and microbial 
activity (Coenen-Stass et al. 1980, Frouz 2000). 
However, the contribution to total CO2 emis-
sions from red wood ant mounds was found to 
be minor on an ecosystem level (Risch et al. 
2005). Since CO2 in red wood ant mounds is 
derived from biological processes, changes in 
environmental conditions could alter C emis-
sions from these mounds. Red wood ants are 
known to keep temperature inside their mounds 
at higher levels than the outside air (Zahn 1957, 
Rosengren et al. 1987), but mound temperatures 
show fluctuations related to changes in air tem-
perature (Heimann 1963, Rosengren et al. 1987). 
Since ants are poikilothermal organisms, diurnal 

or seasonal fluctuations in air temperature could 
affect CO2 emissions from their mounds. There-
fore, our objectives were to examine how air 
temperature affects daily and seaonal CO2 emis-
sions from red wood ant mounds.

Study area and methods

Study area

This study was conducted in the Swiss National 
Park, located in the southeastern part of Switzer-
land. The Park covers an area of 170 km2 with 
elevations ranging from 1350 to 3170 m above 
sea level (m a.s.l.). Mean annual precipitation 
and temperature are 925 ± 162 mm and 0.2 ± 
0.7 °C, respectively (average ± standard devia-
tion, measured at the Park’s weather station in 
Buffalora between 1904 and 1994 located at 
1980 m a.s.l.). Fifty km2 of the Swiss National 
Park are covered with conifer forests, which 
are composed of mountain pine (Pinus montana 
Miller), Swiss stone pine (Pinus cembra L.), 
European larch (Larix decidua Miller), Scots 
pine (Pinus sylvestris L.) and Norway spruce 
(Picea abies (L.) Karst.). Nearly pure stands of 
mountain pine are the early-successional forests, 
which are replaced by mixed-conifer stands. 
Most mixed forests contain all five conifer 
species, but stands dominated by larch/moun-
tain pine are also found. The mixed forests are 
replaced by late-succession stone pine or stone 
pine–larch stands (Risch et al. 2003, 2004). A 
detailed description of the four stand types is 

Table 1. Description of the four forest types found in the Swiss National Park (from Risch et al. 2003, 2004).

Stand type Elevation Canopy Stand Stand Basal Stand
 (m a.s.l) closure height age area density
  (%) (m) (years) (m2 ha–1) (stems ha–1)

Mountain pine1 2006 43  14 165 25 1659
Larch/mountain pine2 1850 46 19 168 34 1275
Mixed3 1792 54 25 200 42 784
Stone pine4 1963 63 27 236 54 577

Species compsition (percentage of total basal area):
1P. montana 96%, P. cembra 2%, L. decidua 1%, P. sylvestris 1%
2P. montana 35%, L. decidua 62%, P. abies 1%, P. sylvestris 2%
3P. montana 17%, P. cembra 1%, L. decidua 32%, P. abies 34%, P. sylvestris 16%
4P. montana 3%, P. cembra 63%, L. decidua 25%, P. abies 8%, P. sylvestris 1%
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given in Table 1. The total number of red wood 
ant mounds in the different stand types ranged 
from 6.0 to 13.3 per hectare (Table 2). For more 
detail on mound distribution within the four 
forest types, see Risch et al. 2005). Three differ-
ent red wood ant species are found in the forests 
of the Swiss National Park: Formica lugubris 
ZETT., Formica aquilonia YARROW (Dethier 
& Chérix 1982) and Formica paralugubris (D. 
Chérix pers. comm.).

CO2 measurements

We selected four mounds in each of the four 
stand types for this study, resulting in a total 
of 16 mounds (Table 2). CO2 emissions were 
measured with a closed system soil respiration 
chamber (SRC-1, 15 cm high, 10 cm diam-
eter) attached to a PP-System EGM-4 infrared 
gas analyser (PP-Systems, Hitchin, Hertford-
shire, UK) by taking thirteen measurements on 
two transects across each mound (Fig. 1) every 
second week from late June until mid-September 
2003 (6 sampling periods). As access into the 
Swiss National Park is normally not permitted at 
night, we were only able to sample two of the 16 
mounds over a 24-hour period on a regular basis 
(Table 2). These measurements were conducted 
bi-monthly between July and mid-September. 
For the first half of this period we sampled at 
0800 hrs, 1400 hrs, 2000 hrs, and 0200 hrs, then 
switched to 1100 hrs, 1700 hrs, 2300 hrs, and 
0500 hrs in order to obtain a higher resolution of 
daily changes in CO2 emissions and air tempera-
ture. Air temperature was measured over a 45 

minute period with a portable temperature sensor 
placed in the shade 50 cm above the soil surface 
10 m away from the mound.

Statistical analyses

Previous calibration of our soil respiration 
chamber with a chamber system covering 
the entire mound (M. Ohashi et al. unpubl. 
data) indicated that the arithmetic mean of our 
mound measurements would give the best esti-
mate for total mound CO2 emissions. There-
fore, we averaged the 13 measurements taken 
at each mound for each mound and sampling 
date.

Table 2. Average number of mounds per hectare in the four different stand types (from Risch et al. 2005), height 
and diameters of the 16 mounds (four per stand type) under study. Height = average from height measurements 
taken at the N, S, E, and W sides of the mound. DNS = North–South diameter, DEW = East–West diameter, Italics: 
mounds additionally sampled for CO2 during the 24hr measurements.

Stand type No. of Mound #1 Mound #2 Mound #3 Mound #4
 mounds    
 per ha Height DNS DEW Height DNS DEW Height DNS DEW Height DNS DEW

 (%) (cm)   (cm)   (cm)   (cm)

Mountain pine 6.4 29 60 90 25 70 60 44 110 120 90 175 175
Larch/mountain pine 10.9 44 110 120 64 190 190 66 175 160 38 95 100
Mixed 13.3 48 155 135 62 160 135 58 155 180 69 205 180
Stone pine 6.0 48 170 120 53 180 135 69 220 215 91 210 230

a

b

1/6a

1/6b  

North

South

EastWest 

Red wood ant mound CO2 measurement with
PP-system chamber 

Aerial view of a red wood ant mound with
diameters a and b

Fig. 1. Red wood ant mound CO2 emission sampling 
design.
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Seasonal measurements

As CO2 emissions among the stand types were 
not significantly different (Risch et al. 2005), we 
averaged CO2 emission rates of all 16 mounds 
and the measurements for air temperature for 
each sampling day (arithmetic means). Regres-
sion analysis was used to assess the correlation 
between the red wood ant mound CO2 emission 
and the date of the year, and air temperature and 
date of the year.

Diurnal measurements

We normalized CO2 emission rates and air tem-
perature data for each measuring date and mound 
to remove seasonal effects of changes in CO2 
emissions. Data from the two mounds were then 
averaged for each sampling time of the day, and 
regression analysis was used to assess the corre-
lation between mound CO2 emission and time of 
day, and air temperature and time of day.

Results and discussion

Seasonal patterns in red wood ant 
mound CO2 emissions

The highest CO2 emission rates were measured 
in mid-summer and the lowest in September, 

which closely followed the seasonal changes 
in observed air temperature (Fig. 2). Heimann 
(1963) and Rosengren et al. (1987) showed 
that nest temperatures in Formica polyctena 
(Foerst.) mounds were higher than the tem-
perature of the surrounding air during their 
active season (April through October), but dis-
played strong seasonal patterns which closely 
followed changes in air temperatures. Since ants 
are poikilothermal organisms, their metabolic 
rates and therefore CO2 emissions are linked to 
temperature. In a laboratory experiment Holm-
Jensen et al. (1980) showed that the CO2 pro-
duction of Formica rufa L. workers increased 
with increasing temperature. Respiratory rates 
of red wood ants related to temperature have 
also been studied using changes in oxygen con-
sumption instead of CO2 release. Kneitz (1967) 
and Schmidt (1968) showed that oxygen con-
sumption of F. polyctena increased at higher 
temperatures, as did metabolic heat production 
by red wood ant workers and pupea (Horstmann 
1990). Increased oxygen consumption rates at 
higher temperatures were also reported for other 
Formica species (overview in Peakin & Josens 
1978). Coenen-Stass et al. (1980) showed that 
microbial respiration in F. polyctena mound 
material increased with increasing temperature, 
and followed seasonal changes in nest tempera-
ture. Thus, microbial CO2 emissions would be 
the highest in mid-summer, same as ant emis-
sions. The same relationship would probably 

Date

T
em

perature (°C
)

8

10

12

14

16

18

20

22

Mound emissions

Air temperature

17 Jun 7 Jul 21 Jul 4 Aug 18 Aug 9 Sep

Mound CO2: R2 = 0.776
Air temperature: R2 = 0.740

M
ou

nd
 C

O
2 

em
is

si
on

s 
(g

 C
O

2 
m

–2
 h

r–1
)

0

2

4

6

8

10

Fig. 2. Average CO2 emis-
sion rates from red wood 
ant mounds, and average 
air temperature on six 
sampling dates between 
mid June and beginning of 
September 2003. Regres-
sion equations are poly-
nomial (quadratic). Error 
bars = standard errors, n 
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hold true for metabolic rates of other mound-
inhabiting invertebrates, such as e.g., mites, bee-
tles, or earthworms (Laakso & Setälä 1997, 
1998), but we could not find any information on 
this subject in the literature.

Diurnal patterns in red wood ant mound 
CO2 emissions

The diurnal CO2 emission cycle was inversely 
correlated with air temperature. We found high-
est emissions during the night, when tempera-
tures were lowest (Figs. 3 and 4). Greatest dif-
ferences were found in August, when differences 
between day- and night-time temperatures were 
largest (Fig. 4). Mound temperatures show simi-
lar diurnal fluctuations as air temperatures (Hei-
mann 1963), but the amplitudes in mounds are 
much lower than the ones in the surrounding air. 
This could be accomplished by ants clustering 
within the mound at night or during cold periods, 
which raises their respiration rate (Horstmann & 
Schmid 1986, Rosengren et al. 1987), and would 
increase night-time CO2 emissions.

Elevated CO2 emissions from red wood ant 
mounds could also be caused by more ants 
being present in the mounds at night (Finnegan 
1973, Rosengren & Fortelius 1986, Hölldobler 
& Wilson 1990). Skinner (1980) reported that 
nest return rates of mound-building Formica 
rufa L. ants in England were strongly correlated 

with air temperature, being highest in the after-
noon and lowest at midnight and noon. Simi-
lar temperature–nest activity patterns were also 
reported for F. polyctena in the Netherlands (de 
Bruyn & Kruk-de Bruin 1972) and in the Czech 
Republic (Frouz 2000). Zahn (1957) counted in- 
and outgoing red wood ants in artificial mounds 
and observed that the ants moved back to the 
nest when the air temperature dropped outside 
the mound. We did not count returning or leav-
ing ants in our study, but observed lower activity 
during the night measurements.

Frouz (2000) hypothesized that higher night-
time ant metabolism or ant density that cause 
increases in mound temperature could also trig-
ger an increase in microbial activity, especially 
when the mound surface layer (0 to 15 cm) is 
wet (over 50% moisture content). Even though 
some of our measurements were conducted 
shortly after rain events, the C fluxes from our 
mounds always showed the same diurnal pattern 
with highest emissions during the night when 
air temperatures were at their minimum (Fig. 
4). Therefore, we do not think that changes in 
microbial decomposition of the mound organic 
matter played a major role in our study.

Thermal convection of CO2-rich subsurface 
air to the soil surface has occasionally been 
observed in forest ecosystems when air tempera-
tures dropped below soil temperatures at night 
(Witkamp 1969). Thus, decreasing nightly air 
temperatures could potentially cause higher CO2 

Fig. 3. Average daily CO2 
emission rates from red 
wood ant mounds, and 
average daily air tem-
perature. Regression 
equations are polyno-
mial (cubic). Error bars = 
standard errors, n = 4.
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emissions from red wood ant mounds. However, 
diurnal changes in mound surface temperatures 
(0 to 10 cm) and air temperature follow the same 
pattern with mound surface temperatures always 
being higher (e.g., Heimann 1963, Frouz 2000). 
Thus, thermal convection would affect red wood 
ant mound CO2 emissions at any time during the 
day, and not only at night.
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Fig. 4. CO2 emission of one red wood ant mound measured at four different times during the day between 21 July 
and 9 September 2003. The white ellipse indicates the aboveground basal extent of the mound (aerial view). Data 
points between the 13 sample locations were calculated by interpolation of the surrounding sample points. CO2 
emissions ranged from 5 g CO2 m

–2 hr–1 (dark gray) to 15 g CO2 m
–2 hr–1 (light gray).
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