Development of 12 EST-SSR markers in Aquilegia (Ranunculaceae) and cross amplification in three Chinese species

Yan-Jing Wang, Jian-Fang Li \& Zhan-Lin Liu*

Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education); School of Life Science, Northwest University, Xi'an, 710069, China (*corresponding author's e-mail: liuzl@nwu.edu.cn)

Received 14 Oct. 2013, final version received 18 June 2014, accepted 18 June 2014
Wang, Y. J., Li, J. F. \& Liu, Z. L. 2014: Development of 12 EST-SSR markers in Aquilegia (Ranunculaceae) and cross amplification in three Chinese species. - Ann. Bot. Fennici 51: 318-321.

Abstract

In order to investigate the population genetic structure of three sympatric Chinese Aquilegia species, we developed a novel set of 12 SSR markers from the EST unigene database. The number of alleles per locus ranged from one to five. The observed heterozygosity $\left(H_{\mathrm{o}}\right)$ and the expected heterozygosity $\left(H_{\mathrm{e}}\right)$ varied from 0.067 to 1.000 and from 0.064 to 0.791 , respectively. Most of the SSR loci in the three Aquilegia species did not significantly deviate from random mating expectation and the Hardy-Weinberg equilibrium (HWE). Because of their high level of polymorphism, the twelve ESTSSR markers will be valuable for mating system, population genetics and conservation studies of Aquilegia resources in the future.

Introduction

Aquilegia (Ranunculaceae), including more than 70 species, is becoming a new model plant in ecological and evolutionary research due to its floral diversity, variable habitats and unique phylogenetic status (Kramer \& Hodges 2010). The floral diversity is generally related to the specialized pollinators that prefer different floral traits. Tang et al. (2007) investigated the flower phenology in three sympatric Aquilegia species (A. incurvata, A. yabeana and A. ecalcarata) in Qinling Mountains, China and found that their different pollinators played important roles in reproductive isolation. The spurless A. ecalcarata was pollinated by the syrphid fly Metasyrphus latifasciatus, while the spurred A. incurvata
and A. yabeana were mainly pollinated by different bumblebees (Bombus trifasciatus and B. religious, respectively). We aimed to know whether there is any interspecific gene flow and how the behaviors of the different pollinators influence the genetic structure of each species. In this study, we developed a set of novel microsatellite markers to facilitate population genetic studies of the three Aquilegia species.

Material and methods

Perfect microsatellites were obtained by screening through the EST database of A. formosa $\times A$. pubescens available from Unigene Microsatellite Database (http://veenuash.info/web1/index.htm)
with microsatellite length greater than ten repeats for dinucleotides, eight for trinucleotides, and six for tetra-, penta- and hexanucleotides. Totally 386 unique EST sequences containing SSR were derived, of which 30 EST-SSRs were randomly selected for primer design using the software Primer3 (Rozen \& Skaletsky 1999).

EST-SSR markers were evaluated in three Chinese Aquilegia species (A. ecalcarata, $33.623^{\circ} \mathrm{N}, 107.756^{\circ} \mathrm{E}$; A. incurvata, $33.589^{\circ} \mathrm{N}$, $107.790^{\circ} \mathrm{E}$; A. yabeana, $34.074^{\circ} \mathrm{N}, 107.692^{\circ} \mathrm{E}$). The genomic DNA was extracted from silicadried leaves using CTAB method (Doyle \& Doyle 1990) and 15 individuals per species were tested for PCR. Amplification was carried out in a volume of $10 \mu 1$ containing $1 \times$ Taq PCR Mix (Xian Runde Biotechnology Co., Ltd., China), $0.2 \mu \mathrm{M}$ of each primer, and 40 ng of DNA template. PCR was performed with the Touch Down program in MJ Research PTC-200 Thermal Cycler: $94^{\circ} \mathrm{C}$ for 5 min ; 20 cycles of denature at $95^{\circ} \mathrm{C}$ for 30 s ; annealing temperature at $59{ }^{\circ} \mathrm{C}$ for 45 s with $0.5^{\circ} \mathrm{C}$ touchdown per cycle and extension at $72{ }^{\circ} \mathrm{C}$ for 60 s ; then additional 9 cycles of the similar protocol but with the annealing temperature at $50^{\circ} \mathrm{C}$; followed by a final extension of 7 min at $72^{\circ} \mathrm{C}$ for 6 min . The amplified products were separated in 10% denaturing polyacrylamide gels, and visualized by silver staining. Fragment sizes of each locus were weighted with a 50 bp ladder using Quantity One (Bio-Rad).

Results

Out of 30 microsatellite loci, 12 produced reliable polymorphic products (Appendix 1). Possible null alleles were not found in the 12 loci by using MICRO-CHECKER 2.2.3 (Van Oosterhout et al. 2004). The program Genepop (Rousset 2008) was used to estimate population genetic parameters. In A. ecalcarata, the observed (N_{a}) and the effective $\left(N_{\mathrm{e}}\right)$ numbers of alleles per locus varied from 2 to 5 , and from 1.142 to 4.787 , respectively (Appendix 2). The observed heterozygosity $\left(H_{0}\right)$ and the expected heterozygosity $\left(H_{\mathrm{e}}\right)$ ranged from 0.133 to 1.000 , from 0.124 to 0.791 , respectively. In A. incurvata, N_{a} and N_{e} ranged between 1-4, and 1-2.941; H_{o} and H_{e}
ranged between $0-0.867$ and $0-0.660$, respectively. In A. yabeana, N_{a} and N_{e} ranged between 2-5 and 1.557-3.103; H_{o} and H_{e} ranged between $0.267-0.933$ and $0.358-0.678$, respectively. Several loci (A1 and A6 in A. ecalcarata, A10 in A. incurvata, A1 and A10 in A. yabeana) presented potential inbreeding. Two loci (A1 and A10) significantly deviated from Hardy-Weinberg equilibrium in A. yabeana. Linkage disequilibrium was detected among some pairs of EST-SSRs loci (A1 and A9, A8 and A9, A9 and A11, A10 and A11, A5 and A12).

The phylogenetic tree constructed using the UPGMA method indicated that individuals of each species clustered into one group and the relationship between the two Aquilegia species with spurs (A. incurvata and A. yabeana) was much closer (data not shown). These novel ESTSSR markers with high polymorphism in the three Chinese Aquilegia species provided a particularly useful tool for investigating the population structure, phylogenetic relationships and conservation genetics in Aquilegia.

Acknowledgements

The project was sponsored by National Natural Science Foundation of China (J1210063, 31170311, 31370353).

References

Doyle J.J. \& Doyle J.L. 1990: Isolation of plant DNA from fresh tissue. - Focus 12: 13-15
Kramer E.M. \& Hodges S.A. 2010: Aquilegia as a model system for the evolution and ecology of petals. Philosophical Transactions of the Royal Society B 365: 477-490.
Rousset F. 2008: Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. - Molecular Ecology Resources 8: 103-106.

Rozen S. \& Skaletsky H. 1999: Primer3 on the WWW for general users and for biologist programmers. - In: Misener S. \& Krawetz S. (eds.), Bioinformatics methods and protocols, vol 132: 365-386. Humana Press, New York.
Tang L.L., Yu Q., Sun J.F. \& Huang S.Q. 2007: Floral traits and isolation of three sympatric Aquilegia species in the Qinling Mountains, China. - Plant Systematics and Evolution 267: 121-128.
Van Oosterhout C., Hutchinson W.F., Wills D.P.M. \& Shipley P. 2004: MICRO-CHECKER: software for identifying and correcting and genotyping errors in microsatellite data. - Molecular Ecology Notes 4: 535-538.
Appendix 1. Characterization of EST-SSRs derived from three Aquilegia species.

Locus	GenBank number	Repeat motif	Forward primer/reverse primer ($5^{\prime}-3^{\prime}$)	Expected size (bp)	Size range (bp)	Potential function
A1	S27716232	(AT)9	F: ACCTCCCTCCCTGTTGG	165	155-204	unknown
			R: GCTGGTGGCTATGATGATGC			
A2	S27702138	(AG)12	F: CGAGAGCGGAGAGTCACACCAGT	165	165-171	ftsH -like protease
			R: ATCCGTCTCCAAGCCATCTACCC			
A3	S27730007	(TC)11	F: AGCGAACAAAGCGAGAAC	210	191-220	pyruvate kinase
			R: TAGGGCAAATTAAAGAACAAGT			
A4	S27703621	(TC)9	F: CCCGGTCCCCAGTGTAAAGT	262	260-266	zinc finger A20 and AN1 domain-containing stress-associated protein
			R: CTAGAAGAGGCGACGACGAGAAT			
A5	S27726706	(ATG)7	F: CCACGTCATCTTCCCCAAAAT	237	232-238	EID1-like F-box protein 3
			R: TGACGACGACGACGAAGAAAAT			
A6	S27718411	(GCT)9	F: GCCCCGTCCTCCACCACT	172	163-174	protein SEUSS-like 2
			R: CCCCCATCAGCTCCCACAG			
A7	S27716239	(ACT) 7	F: AACTCAGCCGGATAAAAGACAGC	178	154-186	NAC domain containing protein 35
			R: GGCCATCCCAAGAGCAGTTC			
A8	S27695852	(AAG)7	F: CGAAATCACTTAATAACGGACAAC	392	362-392	zinc finger (MYND type) family protein/F-box family protein
			R: GATGGCAAAAGCAGCAATAAGC			
A9	S27766206	(ACA)7	F: AGACAACAAGCTCGGCAAAAATG			
			R: GCCACCACAACTTCACCACCTT	368	354-369	transcription factor bHLH64
A10	S27747128	(AGT)8	F: AACTGAATATGGATAGGGGAGAT	416	416-431	dehydrin COR47
			R: ATTGCCAGGGTACCATAAGACT			
A11	S27706925	(TGC)8	F: CAATCAACGACCCATCAGGACCAG	478	450-499	transcriptional corepressor LEUNIG LUC7 related protein
			R: GATGCAGCAGCTTCTATTACAAA			
A12	S27767864	(AAAG) 6	F: CTGTTTGCGTGAGGGTGAGA	251	163-259	
			R: CAGCCAAGAAAAGACGACAAACAT			

Appendix 2. Parameters of twelve EST-SSRs in three Chinese Aquilegia species. $N_{\mathrm{a}}=$ observed number of alleles; $N=$ effective number of alleles; $H_{o}=$ observed heterozygosity; $H_{\mathrm{e}}=$ expected heterozygosity; $F=$ inbreeding coefficient; $P_{\text {HWE }}=$ Chi square p value for Hardy-Weinberg equilibrium test.

Species	Locus	$N_{\text {a }}$	$N_{\text {e }}$	H_{0}	H_{e}	F	$P_{\text {HwE }}$
A. ecalcarata	A1	4.000	2.542	0.533	0.607	0.121	0.329
	A2	4.000	3.659	0.800	0.727	-0.101	0.747
	A3	2.000	1.724	0.800	0.420	-0.905	1.000
	A4	2.000	1.471	0.400	0.320	-0.250	1.000
	A5	4.000	2.866	0.733	0.651	-0.126	0.721
	A6	2.000	1.471	0.267	0.320	0.167	0.464
	A7	3.000	2.074	0.667	0.518	-0.288	0.952
	A8	3.000	1.495	0.400	0.331	-0.208	1.000
	A9	2.000	1.800	0.800	0.444	-0.800	0.899
	A10	2.000	1.142	0.133	0.124	-0.071	1.000
	A11	3.000	2.018	1.000	0.504	-0.982	1.000
	A12	5.000	4.787	0.800	0.791	-0.011	0.473
A. incurvata	A1	3.000	2.018	0.733	0.504	-0.454	1.000
	A2	4.000	2.239	0.800	0.553	-0.446	0.974
	A3	2.000	1.991	0.800	0.498	-0.607	0.9985
	A4	2.000	1.965	0.600	0.491	-0.222	0.903
	A5	3.000	2.632	0.867	0.620	-0.398	0.861
	A6	2.000	1.069	0.067	0.064	-0.034	na
	A7	3.000	2.228	0.867	0.551	-0.573	0.998
	A8	1.000	1.000	0.000	0.000	na	na
	A9	4.000	2.941	0.667	0.660	-0.010	0.413
	A10	2.000	1.385	0.200	0.278	0.280	0.326
	A11	2.000	1.642	0.800	0.391	-1.045	1.000
	A12	2.000	1.867	0.733	0.464	-0.579	1.000
A. yabeana	A1	3.000	2.778	0.267	0.640	0.583	0.002
	A2	3.000	2.663	0.667	0.624	-0.068	0.546
	A3	2.000	1.991	0.867	0.498	-0.741	0.999
	A4	2.000	1.965	0.600	0.491	-0.222	0.899
	A5	5.000	3.103	0.733	0.678	-0.082	0.346
	A6	3.000	1.590	0.400	0.371	-0.078	0.602
	A7	2.000	1.557	0.533	0.358	-0.491	1.000
	A8	3.000	2.866	0.667	0.651	-0.024	0.311
	A9	3.000	2.663	0.933	0.624	-0.495	0.911
	A10	3.000	2.273	0.333	0.560	0.405	0.005
	A11	2.000	1.800	0.533	0.444	-0.200	0.896
	A12	3.000	2.074	0.600	0.518	-0.159	0.742

