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Growth, below/above-ground mass ratio (BG:AG ratio), root morphology, carbohy-
drate content, and alcohol dehydrogenase (ADH) activity in the low-elevation species 
Phalaris arundinacea and the high-elevation species Miscanthus sacchariflorus buried 
under 0, 5, and 10 cm of sediment were investigated one, two, and three months after 
burial. Biomass accumulation, BG:AG ratio, and the starch content of both species 
generally decreased with increasing burial depth and burial time, except for higher 
biomass accumulation in P. arundinacea in the first month. In the first month, adventi-
tious roots of both species, and first-order laterals of P. arundinacea, were shorter and 
thicker in the buried plants than in the controls. The ADH activity in both species and 
the soluble sugar content of P. arundinacea increased with increasing burial depth in the 
first month. Only the diameter of adventitious roots and the soluble sugar content of P. 
arundinacea were affected by burial depth after two or three months. It is concluded that 
P. arundinacea is more tolerant to sedimentation than M. sacchariflorus due to more 
efficient acclimation strategies in root morphology and soluble sugar content. However, 
the ability to acclimate becomes weaker over time due to consistently decreasing starch 
content and the trade-off between tolerance to sedimentation and plant growth.

Introduction

Sedimentation, a recurrent event in coastal and 
freshwater ecosystems, has far-reaching effects on 

plant growth and vegetation distribution (Maun 
1994). These effects are mainly due to changes 
in soil aeration, soil redox potential, soil nutrient 
status, soil bulk density, and microorganism com-
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position (Maun 1998, Zhao et al. 2007). Wetland 
plants differ considerably in their susceptibility to 
sedimentation (Shi et al. 2004, Sun et al. 2010). 
Because sediments can be an important source of 
nutrients and can reduce water evaporation (Walls 
et al. 2005, Zheng et al. 2012), short-term and 
relatively shallow burial may stimulate the growth 
of sedimentation-tolerant species due to increased 
nutrient or water availability in root zones. How-
ever, burial in sediment inhibits growth of sensi-
tive species (Zhao et al. 2007, Pan et al. 2012), 
and even tolerant species are not able to withstand 
deep burial for extended periods (Shi et al. 2004, 
Li et al. 2010). Many studies have focused on 
the effects of burial depth on plant growth, while 
less attention has been paid to burial time. As 
a result, the effect of time on plant acclimation 
(morphological and physiological adjustments) to 
sedimentation is still unclear (Cabaço et al. 2008).

It is well known that sedimentation-tolerant 
species can withstand short-term burial through 
morphological and/or physiological adjustments, 
such as elongation of stems or leaves (Shi et al. 
2004), lower root:shoot ratio (Dech & Maun 
2006), shorter and thicker roots (Chen & Maun 
1999), and higher alcohol dehydrogenase (ADH) 
activity and soluble sugar content (Sun et al. 
2010, Pan et al. 2012). These mechanisms may 
be related to increases in oxygen transportation, 
decreases in oxygen loss from root tips, or a 
reduction in anoxic damage (Armstrong 1979, 
Colmer 2003). Parolin et al. (2002) found that 
low-elevation plants can tolerate longer periods 
of flooding and higher rates of sedimentation than 
high-elevation species. Therefore, low-elevation 
species might be more tolerant to sedimentation, 
and might have more efficient morphological and 
physiological strategies to acclimate to sedimen-
tation. However, these responses are likely to 
vary over time (Bouma et al. 2001, Walls et al. 
2005), because plants have to manage the sup-
plies of critical resources to perform different 
functions (Bazzaz 1997). For example, long-term 
anaerobic metabolism in root tissues can lead to 
over-consumption of carbohydrates, which might 
decrease the carbohydrate available to support 
plant growth (Hook & Brown 1973). Addition-
ally, plant roots that perform optimally after deep 
burial usually do not absorb nutrients due to the 
trade-off in optimal morphological acclimation 

to deep burial or nutrient absorption (Xie et al. 
2007). Therefore, wetland plants may acclimate 
to short-term burial through morphological or 
physiological adjustment, but acclimation strate-
gies likely become ineffective over time (Maun 
et al. 1996, Shi et al. 2004). This requires further 
confirmation.

Dongting Lake, the second largest freshwater 
lake and a typical river-connected lake in China, 
is periodically flooded from May to October, 
accompanied by heavy sedimentation (Li et al. 
2008). In this study, we investigated the morpho-
logical and physiological adjustments of wet-
land macrophytes in response to different burial 
times. In a three-month greenhouse experiment, 
two wetland plants common in Dongting Lake 
were grown at three burial depths (0, 5, and 10 
cm). The low-elevation species, Phalaris arun-
dinacea, can grow on very low sandbars with 
heavy sedimentation, while the minimum alti-
tude of the high-elevation species, Miscanthus 
sacchariflorus, is more than 1.5 m higher than 
that of P. arundinacea (Zheng et al. 2009). We 
tested three hypotheses: (1) biomass accumula-
tion will decrease to a greater degree in M. sac-
chariflorus than in P. arundinacea after burial; 
(2) root diameter, soluble sugar content, and 
ADH activity will increase more and below/
above-ground mass ratio (BG:AG ratio), root 
length and starch content will decrease more in 
buried P. arundinacea than in buried M. sac-
chariflorus; and (3) all these indices will gradu-
ally decrease over time and the decrease will be 
more pronounced in M. sacchariflorus than in P. 
arundinacea.

Material and methods

Plant material

On 13 April 2011, ramets of P. arundinacea and 
M. sacchariflorus were excavated from monodo-
minant stands of the two species growing in Chun-
feng Village (29°13´49.72´´N, 113°02´32.79´´E), 
East Dongting Lake, China. After collection, 
ramets were transported to a greenhouse at the 
Institute of Subtropical Agriculture, the Chinese 
Academy of Sciences, where the temperature was 
maintained at 25 ± 2 °C during the day and 17 
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± 2 °C at night. Light was provided by 400 watt 
SON-T ARGO sodium lamps at a photon flux 
density of 600 µmol m–2 s–1 (PAR) in a 14 h 
light/10 h dark cycle. The ramets were placed in 
plastic buckets (88 cm ¥ 67 cm ¥ 63 cm) contain-
ing 15 cm of soil (19 g kg–1 organic matter, 29 
µg g–1 exchangeable N, 19 µg g–1 exchangeable 
P, 1.12 g cm–3 bulk density, and redox potential 
= 469 mV) that had also been excavated from 
Chunfeng Village in order to facilitate the devel-
opment of new ramets.

Experimental design

On 21 May 2011, 36 ramets per species that were 
similar in size (2 or 3 leaves and 10 cm in height) 
were individually transplanted into 36 polyvinyl 
chloride (PVC) tubes (height 18 cm; diameter 
11 cm; one ramet per tube). In each tube, four 
drainage holes (diameter 1 cm) were drilled at 
even intervals 6 cm above the bottom. Each tube 
was filled with 6 cm of the same soil (used for 
plant incubation). Prior to treatment, the mor-
phological and physiological characteristics of 
three plants per species were measured. Previ-
ous study has shown that burial under 10 cm of 
sediment significantly inhibits the growth of M. 
sacchariflorus in the Dongting Lake wetlands, 
so 10 cm was chosen as the maximal depth (Pan 
et al. 2012).

A total of 72 tubes (36 tubes per species) 
were randomly assigned to one of four plastic 
buckets (88 cm ¥ 67 cm ¥ 63 cm, nine ramets per 
species per bucket). The tubes were randomly 
placed in each bucket. After one week, the plants 
were buried under 0, 5, or 10 cm of soil. The 
soil used for burial was the same as for plant 
incubation. The water depth in each bucket was 
maintained at 6 cm. Tap water (containing 51.1 
µg l–1 NH4

+-N, 176 µg l–1 NO3
–N and 52.7 µg l–1 

PO4
3+-P, pH = 7.2) was supplied as needed and 

completely replaced every two weeks to prevent 
the growth of freshwater algae in the buckets.

Harvest and morphological 
measurement

For each burial depth, four plants per species 

(one plant per bucket) were harvested after one, 
two, or three months. After removal from the 
soil, the plants were carefully cleaned using 
tap water, divided into leaves, stems, rhizomes, 
and roots, and the fresh weight of each part was 
recorded (± 0.0001 g). Approximately half of the 
fresh roots of each plant were used for analysis 
of root morphology. The remaining plant tissues 
were dried in an oven at 85 °C for 48 h, and then 
reweighed to calculate the wet to dry conversion 
factor. Dry weights were then used for calcula-
tion. Biomass accumulation was calculated as 
the sum of the root, rhizome, stem, and leaf 
masses. The ratio of below-ground biomass to 
the above-ground biomass (BG:AG) was calcu-
lated as the ratio of root + rhizome biomass to 
stem + leaf biomass.

Root length and diameter were meas-
ured using a vernier caliper and a microscope 
equipped with an ocular micrometer (Olym-
pus BX51; Olympus, Japan), respectively. Four 
representative full-grown adventitious roots and 
first-order laterals of maximum length (Bouma 
et al. 2001) from each plant were measured. The 
average root length and diameter for each plant 
was used in the statistical analyses.

Carbohydrate analyses

Non-structural carbohydrate content was ana-
lyzed according to the methodology described 
by Yemm and Willis (1954). Dry root samples 
were ground to fine powder and extracted three 
times using 80% ethanol (v/v). The extract was 
then used for soluble sugar analysis after addi-
tion of anthrone reagent, followed by measure-
ment of absorbance at 630 nm using a spectro-
photometer. The residue remaining after soluble 
sugars extraction was dried and extracted using 
30% perchloric acid and analyzed for starch (as 
glucose equivalent) using the anthrone reagent.

ADH activity

The root system was separated from the plant 
and about 0.05 g of fresh root material was 
immediately placed in ice. ADH was extracted 
(4 °C) from powdered root tissue in 5 ml assay 
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mixtures (50 mM phosphate buffer pH 7.5, 
5 mM MgCl2,1 mM phenylmethyl sulfonyl fluo-
ride). Plant extracts were then centrifuged at 
15 000 rpm for 20 min at 4 °C. Finally, the ADH 
content in plant extracts was measured using 
diagnostic alcohol kits (Nanjing Jiancheng Bio-
engineering Institute, China). The results were 
expressed in enzyme units per milliliter of total 
serum protein; 1 U of the enzyme catalyzes the 
reduction of 1 nmol NAD+ per minute at a tem-
perature of 37 °C.

Statistical analysis

Two-way ANOVA (followed by Tukey’s test), 
with burial depth and treatment time as fixed fac-
tors, was used to determine their effects on bio-
mass accumulation, BG:AG ratio, root length, 
root diameter, soluble sugar and starch content, 
and ADH activity. In case of first-order lateral-
root diameter, Bonferroni correction for multiple 
comparisons was applied. Data were log10-trans-
formed if necessary to meet the assumptions of 
normality and homoscedasticity. Normality was 

assessed using a kurtosis test, and homoscedas-
ticity was tested using Levene’s test. All statisti-
cal analyses were performed using the SPSS17.0 
package (SPSS Inc., USA).

Results

Biomass accumulation

Biomass accumulation in both species was sig-
nificantly affected by burial depth, and the effect 
of treatment time on biomass accumulation 
was dependent on burial depth (with significant 
burial depth ¥ treatment time interaction, p < 
0.01; Table 1, Fig. 1A and B). Miscanthus sac-
chariflorus did not survive three months buried 
under 5 cm of soil or two months buried under 
10 cm of soil, but P. arundinacea survived the 
entire 3-month study period. In the first month, 
relative to that of the unburied plants, the bio-
mass accumulation in P. arundinacea increased 
by 79.6% and 66.6%, while that of M. sacchari-
florus decreased by 20% and 46.4% in the 5 and 
10 cm burial, respectively. All the P. arundina-

Table 1. Summary of two-way ANOVA for biomass accumulation, below/above-ground mass ratio, adventitious 
root length, first-order lateral root length, adventitious root diameter, first-order lateral root diameter, starch content, 
soluble sugar content, and ADH activity in Phalaris arundinacea and Miscanthus sacchariflorus ramets growing 
under three burial depths at three harvest times.

	 Burial depth (B )	 Burial time (T )	 B ¥ T
	 	 	
	 Species	 n	 %SS	 p	 %SS	 p	 %SS	 p

Biomass accumulation (g dry wt plant–1)	 Phalaris	 4	 19.90	 < 0.001	 0.27	 0.910	 56.0	 < 0.001
	 Miscanthus	 4	 43.03	 < 0.001	 5.73	 0.059	 8.24	 0.006
Below-:above-ground mass ratio	 Phalaris	 4	 34.34	 < 0.001	 47.84	 < 0.001	 3.08	 0.270
	 Miscanthus	 4	 38.08	 < 0.001	 60.78	 < 0.001	 11.88	 0.010
Adventitious root length (cm)	 Phalaris	 4	 9.19	 0.140	 25.65	 0.007	 7.66	 0.481
	 Miscanthus	 4	 38.66	 < 0.001	 53.98	 < 0.001	 0.01	 0.869
First-order lateral root length (cm)	 Phalaris	 4	 27.23	 < 0.001	 29.09	 < 0.001	 12.58	 0.053
	 Miscanthus	 4	 1.57	 0.854	 5.23	 0.421	 8.74	 0.313
Adventitious root diameter (µm)	 Phalaris	 4	 38.08	 < 0.001	 23.92	 0.001	 6.43	 0.276
	 Miscanthus	 4	 63.00	 < 0.001	 11.33	 0.052	 0.03	 0.976
First-order lateral root diameter (µm)	 Phalaris	 4	 41.03	 < 0.001*	 3.77	 0.277	 17.63	 0.030*
	 Miscanthus	 4	 20.04	 0.124	 1.43	 0.847	 2.46	 0.459
Starch content (mg g–1)	 Phalaris	 4	 53.95	 < 0.001	 11.37	 0.017	 2.43	 0.727
	 Miscanthus	 4	 24.16	 0.002	 42.34	 < 0.001	 0.11	 0.794
Soluble sugar content (mg g–1)	 Phalaris	 4	 59.16	 < 0.001	 0.01	 0.972	 8.26	 0.177
	 Miscanthus	 4	 15.03	 0.131	 2.84	 0.650	 26.89	 0.010
ADH activity (U ml–1 g–1 fresh wt)	 Phalaris	 4	 51.93	 < 0.001	 7.86	 0.008	 22.14	 < 0.001
	 Miscanthus	 4	 42.52	 0.001	 19.71	 0.018	 6.73	 0.079

* Bonferroni-corrected values
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Fig. 1. (A and B) Biomass accumulation and (C and D) below/above-ground mass ratio in (A and C) Phalaris 
arundinacea and (B and D) Miscanthus sacchariflorus ramets growing under three burial depths (0, 5, and 10 cm) 
at three harvest times (one, two, and three months; means + SE, n = 4). Different letters indicate significant differ-
ence (p < 0.05) between treatments at each harvest time.

cea plants and most of the M. sacchariflorus 
plants (except one plant in the 10-cm-burial 
treatment) emerged from the sediment surface 
after one month. Subsequently, biomass accumu-
lation decreased with increasing burial depth and 
burial time in both species.

Below/above-ground mass ratio (BG:AG 
ratio)

The BG:AG ratio in both species was signifi-
cantly affected by burial depth and treatment 
time (p < 0.001; Fig. 1C–D), but only ratio in 
M. sacchariflorus it showed a significant burial 
depth ¥ treatment time interaction (p < 0.05; 
Table 1 and Fig. 1D). As compared with that of 
the unburied plants, the BG:AG ratio in P. arun-
dinacea decreased in both 5 and 10-cm-burial 
treatments during the first month by 33.2% and 
40.8%, respectively, but that of M. sacchariflorus 
decreased only in the 10-cm-burial treatment 
by 47.1% (p < 0.05). After the first month, the 
BG:AG ratios in P. arundinacea and M. sacchari-

florus decreased by 40.5% and 75.0% in the 10- 
and 5-cm-burial treatments relative to unburied 
plants after 2 months (p < 0.05), respectively. It 
is clear that the adjustability of the BG:AG ratio 
decreased gradually over time.

Root morphology

Root length was significantly affected by treat-
ment time (Fig. 2), and root diameter was 
affected by burial depth in both species (Fig. 3), 
with the exception of the M. sacchariflorus first-
order laterals, which were unaffected by either 
treatment time or burial depth (p > 0.05, Table 1). 
The effect of treatment time on the diameter of P. 
arundinacea first-order laterals was dependent 
on burial depth (with significant burial depth ¥ 
treatment time interaction; p < 0.05, Fig. 3C). 
In the first month, the adventitious roots of both 
species, and first-order laterals of P. arundina-
cea, became shorter and/or thicker in the 5- and 
10-cm-burial treatments as compared with those 
of the unburied plants. Subsequently, only in P. 
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Fig. 2. (A and B) Length of adventitious roots and (C and D) first-order laterals of (A and C) Phalaris arundinacea 
(B and D) and Miscanthus sacchariflorus ramets growing under three burial depths (0, 5, and 10 cm) at three har-
vest times (one, two, and three months; means + SE, n = 4). Different letters indicate significant differences (p < 
0.05) between treatments at each harvest time.

bc 
bc  

ab 
a 

ab  
abc 

a 

c bc 

0 

300 

600 

b 
b 

b b b  

a 

0 

300 

600 

900 

0 1 2 3 
Time (months) 

c 

ab  ab a 

abc 
abc 

a 

abc bc 

0 

100 

200 

a a 

a 
a 

a  

a 

0 

150 

300 

0 1 2 3 
Time (months) 

A

B

C

D

A
dv

en
tit

io
us

 ro
ot

 d
ia

m
et

er
 (µ

m
)

Fi
rs

t-o
rd

er
 la

te
ra

l r
oo

t d
ia

m
et

er
 (µ

m
)

0 cm 5 cm 10 cm 
Fig. 3. (A and B) Diameter of adventitious roots and (C and D) first-order laterals of (A and C) Phalaris arundina-
cea and (B and D) Miscanthus sacchariflorus ramets growing under three burial depths (0, 5, and 10 cm) at three 
harvest times (one, two, and three months; means + SE, n = 4). Different letters indicate significant differences (p < 
0.05) between treatments at each harvest time.



Ann. BOT. Fennici  Vol. 51  •  Ability to acclimate to sedimentation gradually decreases with burial time	 35

arundinacea the adventitious root diameter was 
affected by burial depth, increasing by 50.1% 
in the 5-cm-burial treatment after two months 
(Fig. 3A; p < 0.05). Therefore, root morphology 
responses to burial were more pronounced in the 
first month than in the subsequent two and three 
months.

Soluble sugar and starch contents

The starch content in both species was sig-
nificantly affected by treatment time and burial 
depth (p < 0.05; Fig. 4A and B), while the 
soluble sugar content was only affected by burial 
depth in P. arundinacea (p < 0.001; Table 1, Fig. 
4C). In the first month, the soluble sugar content 
in P. arundinacea increased by 76.7% relative to 
that in the unburied plants in the 10 cm burial, 
and the starch content in this species decreased 
by 24.3% and 31.5% relative to that in the 
unburied plants in the 5- and 10-cm-burial treat-
ments. Subsequently, the soluble sugar content 
increased in both P. arundinacea (46% rela-
tive to that in the unburied plants in the 10 cm 

burial after three months) and M. sacchariflorus 
(55.3% relative to that in the unburied plants in 
the 5 cm burial after two months), but the starch 
contents decreased only in P. arundinacea: by 
38.4% and 34.2% relative to that in the unburied 
plants after two months and by 46% and 44.9% 
relative to that in the unburied plants after three 
months in the 5- and 10-cm-burial treatments 
(p < 0.05), respectively. Therefore, the changes 
in carbohydrate content after sedimentation were 
species-specific.

ADH activity

The ADH activity in both species was signifi-
cantly affected by burial depth and treatment 
time (p < 0.05; Fig. 5A and B), but only P. 
arundinacea showed a significant interaction 
between treatment time and burial depth (p < 
0.001; Table 1 and Fig. 5A). As compared with 
the controls, the ADH activity in P. arundinacea 
(221%) increased more than that in M. sacchari-
florus (162%) in the first month of the 10-cm-
burial treatment. Subsequently, only the ADH 
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Fig. 4. (A and B) Starch content and (C and D) soluble sugar content in (A and C) Phalaris arundinacea and (B 
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activity in M. sacchariflorus increased (138% 
relative to that in the controls in the 5-cm-burial 
treatment) after 2 months (p < 0.05).

Discussion

In the first month, burial (5 or 10 cm) inhib-
ited the growth of the high-elevation species, 
M. sacchariflorus, but stimulated the growth 
of the low-elevation species, P. arundinacea. 
Ramets of M. sacchariflorus died after two or 
three months, while those of P. arundinacea 
did not. These results directly support our first 
hypothesis: biomass accumulation will decrease 
to a greater degree in M. sacchariflorus than in 
P. arundinacea. In this study, the low-elevation 
species was more tolerant to sedimentation than 
the high-elevation species, and this result is con-
sistent with those of other studies (Parolin et al. 
2002, Pan et al. 2012). Acclimation ability may 
be related to morphological and physiological 
adjustments to sedimentation (Maun 1998).

The main factor associated with sedimenta-
tion that affected the growth of both species may 

be decreasing oxygen availability in the root 
zones (Ferreira et al. 2009). This was confirmed 
by increases in ADH activity with burial depth 
in both species in the first month. ADH activ-
ity is usually considered to be a direct indica-
tor of oxygen deficiency in plant roots (Chen 
et al. 2005). Low oxygen availability resulted 
in shorter and thicker adventitious roots and 
lower BG:AG ratios in both species after the 
first month, as these strategies are beneficial for 
the acclimation of plants to anoxia (Maun et al. 
1996, Dech & Maun 2006). However, the two 
species tested differed in their responses, indi-
cating differences in the degree of anoxia toler-
ance. For example, in the first month, only P. 
arundinacea responded to deep burial by grow-
ing thicker and shorter first-order laterals and 
increasing soluble sugar contents. The lateral 
root systems of most anoxia-sensitive species are 
not able to effectively acclimatize toward anaer-
obiosis, and are very susceptible to long-term 
anoxia (Blom & Voesenek 1996). The decreased 
lateral root length of anoxia-tolerant species in 
anoxic environments has also been found in 
other wetland species (Visser et al. 1997). More-
over, high soluble sugar content may be indica-
tive of the ability to supply sufficient energy 
for maintenance of anaerobic respiration (Li et 
al. 2007). It is clear that the morphological and 
physiological strategies employed by P. arundi-
nacea for burial acclimatization were more effi-
cient than those employed by M. sacchariflorus, 
which partly supports our second hypothesis: 
after burial, there will be a greater increase in 
root diameter and soluble sugar content as well 
as in root length in P. arundinacea than in M. 
sacchariflorus.

Treatment time negatively affected the 
growth of both species under deep burial condi-
tions, but only P. arundinacea showed an interac-
tion between treatment time and burial depth, as 
ramets of M. sacchariflorus were unable to with-
stand long-term burial. The effects of sedimenta-
tion on plant growth reported in the literature are 
complicated. For example, after a certain length 
of time, some buried plants start to recover, catch 
up, and then surpass plants that were not buried 
(Zhang & Maun 1990, Sykes & Wilson 1990), 
whereas other plants continuously decline as 
burial time increases (Maun 1998). In addition to 
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Fig. 5. ADH activity in (A) Phalaris arundinacea and (B) 
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ferent letters indicate significant differences (p < 0.05) 
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the complex results associated with burial depth 
and species characteristics (Sun et al. 2010, Pan 
et al. 2012), another difficulty arises because the 
effects of treatment time are generally ignored in 
most studies. However, because wetland species 
can usually survive months of anaerobic stress, 
acclimation responses may be a dynamic adjust-
ment to anoxia (Xie et al. 2008, Zheng et al. 
2009), as shown by the present study.

In our experiment, long-term (3-month) burial 
did not lead to ADH activity or soluble sugar 
content that were persistently greater than in the 
controls, nor did it lead to persistently thicker 
and shorter roots than in the controls, in either 
species. These results partly support our third 
hypothesis: the ability of plants to adjust to burial 
will gradually weaken over time. One of the rea-
sons for this decrease in the ability to adjust to 
burial may be related to decreases in starch con-
tent with increasing burial time, as starch can be 
transformed into soluble sugar in order to satisfy 
the energy required for the necessary physiologi-
cal and morphological adjustments (Chen et al. 
2005). Another reason might be related to the 
trade-off between acclimation to environmental 
stresses and plant growth: plants invest energy in 
acclimatization to sedimentation at the expense 
of plant growth (Bazzaz 1997). Long-term limi-
tation of the energy available for plant growth 
may result in negative feedback to the ability of 
wetland plants to acclimatize to sedimentation. 
For example, the BG:AG ratio in both species 
decreased dramatically with increasing burial 
depth and burial time. This decrease might help 
plants to acclimate to anoxia, but impedes the 
ability of roots to acquire nutrients (Barko et al. 
1991, Wahl et al. 2001). As a result, roots became 
thinner and longer in order to increase root-
sediment contact during the later stages of the 
experiment (Xie et al. 2007). Clearly, sedimenta-
tion-tolerant species can maintain high-vigor for 
a limited period of time after burial.
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