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Accurate and non-destructive methods to determine individual leaf areas of plants 
are a useful tool in physiological and agronomic research. Determining an individual 
leaf area (LA) involves measurements of leaf length (L) and width (W ), or some com-
binations of both parameters. Investigation was carried out in 2008 and 2009 to test 
whether a model could be developed to estimate leaf area of Bergenia purpurascens 
along an elevational gradient across a timberline ecotone, southeastern Tibet. A total 
of 786 leaves, 153–159 leaves for each 100-m elevation range, were measured in 
June 2008 for model construction. Coefficients of LA models incorporating both leaf 
dimensions (L and W ) or W alone were independent of elevation, suggesting that a 
common model can be employed to estimate LA across the whole elevation range. A 
single-variable model using the leaf width (LA = 1.44W 1.90), which was simpler, more 
convenient and also allowed reliable LA estimations, was developed. By applying 
this equation to another independent dataset from a later experiment in June 2009 for 
model validation, we found that observed and predicted LAs exhibited a high degree 
of correlation (R2 = 0.95). Therefore, this model can accurately estimate the leaf area 
of B. purpurascens across a timberline ecotone without use of any instruments.
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Introduction

In terrestrial plants, leaves are the most impor-
tant organs for carbon assimilation and gas 
exchange. Leaf area (LA) strongly influences 
light interception, and therefore plant growth and 
productivity, and becomes one of the key traits in 
ecophysiological and agronomic studies. How-
ever, accurate LA measurements of large num-

bers of leaves, especially in the field, is costly, 
time-consuming, laborious and usually destruc-
tive (Beerling & Fry 1990). Thus, for many fruit 
trees (Ramkhelawan & Bratwaite 1990, Potdar 
& Pawar 1991, Demirsoy & Demirsoy 2003, 
Demirsoy et  al. 2004, 2005, Cittadini & Peri 
2006, Serdar & Demirsoy 2006, Cristofori et 
al. 2007, 2008, Mendoza de-Gyves et al. 2007, 
Demirsoy 2009) and crop species (Rouphael 
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et  al. 2006, 2007, Peksen 2007, Rivera et  al. 
2007, Antunes et  al. 2008, Tsialtas & Masla-
ris 2008, Fascella et  al. 2009, Kandiannan et 
al. 2009, Kumar 2009, Zhou & Shoko 2009, 
Rouphael et al. 2010a, 2010b), non-destructive, 
easily applied models for LA estimation were 
developed based on simple measurements of 
leaf length and/or width. As an alternative to the 
LA measurement, this indirect, non-destructive 
method can provide accurate LA estimates and 
help in situ LA estimation.

Plant morphological traits, including leaf 
area, are determined by a combination of gene 
action and environmental effects. Many of the 
above-mentioned studies were concerned with 
the effects of different genotypes on LA estima-
tion, but only a few paid attention to environ-
mental effects (Rouphael et  al. 2006, Serdar 
& Demirsoy 2006). To our knowledge, there 
are few published paper presenting altitudinal 
effects on LA estimates by using leaf dimen-
sions (except the study by Mendoza de-Gyves 
et  al. 2008), especially in high-altitude regions 
like a timberline ecotone above 4000 m a.s.l. A 
number of studies have found that an individual-
leaf area in the same plant tends to decrease with 
increasing elevation (e.g., Geeske et  al. 1994, 
Kao & Chang 2001), but we still do not know 
whether the varying size of leaf area alters the 
coefficients of models used to estimate leaf area 
from leaf dimensions, for leaf shape (ratio of leaf 
length to width) may change with leaf size in 
some species (see Rouphael et al. 2006).

Bergenia  purpurascens, a perennial winter-
green herb belonging to Saxifragaceae, is widely 
distributed across the Abies timberline ecotone 
above 4000 m a.s.l. in the Sergyemla Mountains 
(one of the highest timberline positions in the 
world), southeast Tibet. Being a medicinal plant, 
its leaves and stems are widely used for reliev-
ing cough and reducing inflammation (Li et al. 
2006). As is known, plants in high-altitude envi-
ronment grow much slower than those in low-
altitude regions because of the influence of low 
temperature (Körner 1999). In order to protect 
the limited natural resources, non-destructive 
method of LA estimation is of great necessity. 
Also, the timberline ecotone in southeast Tibet 
provides an ideal place for studying the relation-
ship between plant and environment since this 

area suffers from litter disturbance. Therefore, 
our aims in this study are to test (1) whether 
altitudinal variation in leaf area affects coef-
ficients of models used for LA estimation, and 
(2) whether there exists a general model that can 
simply, conveniently and accurately estimate LA 
from leaf length and/or width across the whole 
timberline ecotone.

Material and methods

Study sites

This study was conducted on a north-facing 
slope of a U-shaped valley (29°36´N, 94°36´E) 
near the peak of the Sergyemla Mountains in 
southeast Tibet, China. Along this slope (4150–
4642 m a.s.l.), vegetation type changes from sub-
alpine and timberline evergreen needle-leaved 
forests of Abies  georgei  var. smithii (< 4320 
m a.s.l.) to alpine shrublands and/or grasslands 
(> 4320 m a.s.l.), forming a classical transition 
area called the timberline ecotone. According to 
the 3-year meteorological observations at 4390 
m a.s.l., mean January and July air temperatures 
were –6.9 °C and 8.4 °C, respectively, and mean 
annual precipitation was 926.6 mm.

Sampling and leaf measurements

During early June of 2008, we set a straight line 
along the slope from about the foot (4150 m) 
towards the hilltop (4642 m). Along this line, the 
aboveground parts of three to six Bergenia pur-
purascens individuals were randomly sampled 
every 20 m, and the samples were immediately 
enclosed in plastic envelopes. Every 60 m along 
the slope, elevation was measured using GPS so 
that the elevation of each sample site could be 
calculated according to the linear relationship 
between measured elevation and slope distance 
(Elevation = 0.3805 ¥ Distance + 4203, R2 = 
0.99, p < 0.001). In total, 786 leaves, 153–159 
leaves for each elevation range (Table 1), were 
measured for predicting LA. Measurements (to 
the nearest millimeter) of maximum leaf length 
(L) (from lamina tip to the point of petiole inter-
section along the midrib) and width (W ) (at the 
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widest point perpendicular to the midrib) (Fig. 1)  
were carried out during the same day the leaves 
were detached. The actual one-side LA was 
determined with a portable area meter (CI-203, 
CID Inc., USA).

Model building and validation

Eight linear and power functions were deployed 
for LA estimation based on leaf length and/or 
width (Table 2). Selection of the best LA estima-
tion equation was based on the following crite-
ria: (1) combination of the highest coefficients of 
determination (R2) and the lowest mean square 
errors (MSE); (2) simplicity and convenience 
of measurements (Rouphael et  al. 2006, 2007). 
The latter is crucial at such high altitude as that 
of the timberline ecotone in southeast Tibet. 
Further, the difference in slopes and intercepts 
between models developed for each elevation 
range was tested using an analysis of covariance 
(ANCOVA). When no significant differences 
were found, data were pooled and a single rela-
tionship for LA prediction was created. Finally, 
according to the coefficients of determination 
between L and W across the elevation ranges 
(Table 1), we calculated the variance inflation 
factor (VIF, Marquardt 1970) and the tolerance 
value (T, Gill 1986) to detect collinearity in two-
dimensional models (Eqs. 7 and 8 in Table 2). 
This is an important step before a model calibra-
tion, since applying two measurements (i.e. L 
and W ) would introduce potential problems of 
collinearity, leading to poor precision in the esti-
mates of corresponding regression coefficients.

In order to validate a selected model, a total 
of 168 leaves from 9 sites along the slope were 
further sampled (elevation ranged from 4180 m 
to 4600 m) in June 2009. Leaf area was predicted 
using the best one-dimensional model from the 
first experiment. The slope and intercept of the 
model were tested to see if they were signifi-
cantly different from those of the 1:1 correspond-
ence line. Regression and analysis of covari-
ance (ANCOVA) analyses were performed using 
SPSS 13.0 package (SPSS Inc., Chicago, USA).

Results and discussion

In the dataset for model construction (n = 786), 
the leaf length, width and area (LA) ranges were 
3.0–17.6 cm, 1.6–13.0 cm, and 3.5–172.9 cm2, 
respectively. With increasing elevation, mean 
leaf length, width and LA all tended to decrease, 
whereas, leaf shape (L:W ratio) did not vary sig-

Table 1. Bergenia purpurascens leaf dimensions and leaf areas, ratio of length to width (L:W with standard error) 
along an elevational gradient. coefficients of determination (R 2) and mean square errors (MSe) of the linear 
regression between leaf length and width are also given.

elevation (m) n Leaf length (cm) Leaf width (cm) Leaf area (cm2) L:W (Se) R 2 MSe
    
  Mean Min Max Mean Min Max Mean Min Max

4150–4250 158 10.7 4.9 17.6 6.5 2.7 13.0 55.1 10.3 172.9 1.66( 0.11) 0.83 2.45
4250–4350 158 9.4 3.0 16.5 5.9 1.6 10.2 44.9 3.5 121.3 1.61 (0.11) 0.88 2.11
4350–4450 153 8.9 3.5 14.1 5.6 2.3 9.7 39.4 6.4 101.9 1.60 (0.11) 0.80 2.31
4450–4550 158 9.0 3.1 14.6 5.5 2.1 9.8 38.7 4.8 104.9 1.63 (0.10) 0.83 2.07
4550–4640 159 8.0 3.7 12.5 4.9 2.4 8.4 30.6 7.1 71.1 1.64 (0.10) 0.82 1.73
Pooled 786 9.2 3.0 17.6 5.7 1.6 13.0 41.8 3.5 172.9 1.63 (0.11) 0.85 2.17

L

W

 
Fig. 1. Measurements of a Bergenia purpurascens leaf. 
The leaf area is between the area of a triangle and that 
of an ellipse.
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nificantly (Table 1).
For two-dimensional models, the degree of 

collinearity was analyzed. VIF and T ranged from 
5.0 to 8.3 and 0.12 to 0.20, respectively. For each 

elevation range, VIF was < 10, and T > 0.10, 
suggesting that the collinearity between L and W 
can be considered negligible (Gill 1986) and both 
variables can be included.

Table 2. Intercepts (a) and constants (b) of the models estimating the Bergenia purpurascens leaf area (LA) from 
leaf length (L) and width (W ).

equation elevation (m) a b R 2 MSe

1. LA = aL + b 4150–4250 10.98 –62.23 0.89 24.18
 4250–4350 8.64 –36.67 0.93 20.56
 4350–4450 8.08 –32.42 0.92 20.48
 4450–4550 7.93 –32.37 0.91 20.08
 4550–4640 6.73 –23.49 0.93 16.45
 Pooled 8.74 –38.74 0.90 18.24
2. LA = aW + b 4150–4250 15.02 –43.18 0.95 21.11
 4250–4350 13.83 –36.70 0.94 18.67
 4350–4450 12.35 –29.81 0.93 18.69
 4450–4550 13.10 –33.84 0.95 15.94
 4550–4640 11.76 –27.06 0.94 12.97
 Pooled 13.74 –36.53 0.94 16.80
3. LA = aL2 + b 4150–4250 0.50 –4.85 0.93 32.77
 4250–4350 0.45 1.63 0.95 26.64
 4350–4450 0.44 2.11 0.93 24.37
 4450–4550 0.43 2.15 0.93 26.53
 4550–4640 0.42 2.22 0.94 23.36
 Pooled 0.46 0.17 0.94 16.50
4. LA= aW 2 + b 4150–4250 1.02 8.31 0.96 23.85
 4250–4350 1.15 1.51 0.97 21.98
 4350–4450 1.07 3.47 0.94 22.15
 4450–4550 1.11 2.65 0.96 20.43
 4550–4640 1.16 1.47 0.94 17.89
 Pooled 1.09 3.56 0.96 15.56
5. LA = aLb 4150–4250 0.37 2.09 0.95 21.43
 4250–4350 0.52 1.95 0.97 18.52
 4350–4450 0.54 1.94 0.95 16.66
 4450–4550 0.60 1.87 0.95 26.53
 4550–4640 0.66 1.82 0.95 11.41
 Pooled 0.53 1.93 0.96 16.45
6. LA = aWb 4150–4250 1.93 1.76 0.96 20.87
 4250–4350 1.36 1.93 0.97 17.38
 4350–4450 1.50 1.86 0.96 16.27
 4450–4550 1.39 1.91 0.96 20.43
 4550–4640 1.29 1.96 0.95 11.74
 Pooled 1.44 1.90 0.96 15.29
7. LA = a(LW ) + b 4150–4250 0.75 –0.18 0.99 10.23
 4250–4350 0.75 0.09 0.99 8.50
 4350–4450 0.74 0.25 0.99 6.60
 4450–4550 0.73 0.53 0.99 8.43
 4550–4640 0.74 0.14 0.99 5.86
 Pooled 0.74 0.03 0.99 7.89
8. LA = a(LW )b 4150–4250 0.76 0.99 0.99 10.36
 4250–4350 0.76 0.99 0.99 8.39
 4350–4450 0.77 0.99 0.99 6.53
 4450–4550 0.79 0.98 0.99 8.39
 4550–4640 0.78 0.99 0.99 5.76
 Pooled 0.76 0.99 0.99 7.91
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In each elevation range and across the whole 
transect, leaf length, width and functions of these 
dimensions were significantly correlated with 
LA for all eight equations (Table 2, p < 0.0001). 
Except for Eq. 1 at the lowest elevation range 
(4150–4250 m), all equations produced coef-
ficients of determination (R2) greater than 0.90 
(Table 2). Among the eight models used for the 
LA estimation, the linear (Eq. 7 in Table 2) and 
power (Eq. 8 in Table 2) regressions including 
both leaf dimensions exhibited the highest R2 
(> 0.99, Table 2). Also, both models showed the 
smallest mean square errors (Table 2), indicating 
that they predict the best fits among the eight 
models. As far as the linear model of Eq. 7 (see 
Table 2) was concerned, the slope (i.e. leaf shape 
coefficient for pooled data) was 0.74, which 
agreed closely with the slopes calculated for 
leaves of fruit trees (0.66–0.74, see Cittadini & 
Peri 2006, 2007, Cristofori et al. 2008, Fallovo 
et  al. 2008, Mendoza de-Gyves et  al. 2008) 
or cultural crops (0.63–0.74, see Salerno et  al. 
2005, Rouphael et al. 2006, Peksen 2007, Rivera 
et al. 2007, Antunes et al. 2008, Fascella et al. 
2009, Kandiannan et al. 2009). This coefficient 
can be described by a shape between an ellipse 
(0.78) and a triangle (0.5) of leaf length and 
width, because — as shown in Fig. 1 — actual 
leaf area of B. purpurascens is generally larger 
than a triangle but smaller than an ellipse.

Possible altitudinal differences were ana-
lyzed using the selected models. As far as models 

encompassing only leaf length were concerned, 
the slope of the models for different elevation 
ranges tended to decrease in linear functions 
(Eqs. 1 and 3, see Table 2) and increase in power 
functions (Eq. 5, see  Table 2). However, the 
slopes of other models did not vary with eleva-
tion (see Table 2), and when leaf area estimations 
using an equation derived for a single elevation 
range versus the overall model were compared, 
they were not significantly different (p > 0.05) 
(see Table 2). These results suggest that leaf area 
estimation models incorporating leaf length and 
width or single leaf dimension of leaf width for 
Bergenia purpurascens are plausible.

If only one leaf dimension is used in LA 
estimation, W would be better than L, because 
models incorporating only W demonstrate higher 
R2 and smaller mean square errors, and also their 
predictions were independent of elevation. Com-
pared with the L ¥ W models, single variable 
model incorporating W (Eq. 6 in Table 2) also 
allowed reliable LA estimations (R2 = 0.96, MSE 
= 15.29) but at the expense of slight loss of accu-
racy. Given that it requires measurement of only 
one leaf dimension, which simplifies the meas-
urement procedure, this model can be a good 
and non-destructive tool for studying dynamics 
of leaf growth, especially when measurement of 
a large number of leaves is needed (Williams & 
Martinson 2003). Therefore, data for the whole 
transect were pooled and a single power regres-
sion model (LA = 1.44W 1.90) was applied to pre-
dict LA (Fig. 2, R2 = 0.96). Using this equation 
for the later validation experiment in June 2009, 
we compared the predicted LAs and observed 
LAs and found that they correlated well (R2 
= 0.95), and the linear regression for the rela-
tionship between observed and predicted values 
was not significantly different from the 1:1 line 
(Fig. 3). Moreover, the predicated values were 
close to the observed values, giving an underes-
timation of 1.2% in prediction. We preferred this 
power function encompassing only leaf width 
because of its simplicity and convenience, espe-
cially in such a cold area like timberline ecotone 
above 4000 m a.s.l. As stated by Rouphael et al. 
(2006, 2007), model selection requires a balance 
between predictive qualities of the model and the 
economy of including the least number of vari-
ables necessary to predict leaf area.

Fig. 2. Power function between observed values of leaf 
area and leaf width across different elevation ranges in 
the timberline ecotone. The trend line is for all pooled 
data in June 2008 (n = 768).
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Conclusions

The power function encompassing only leaf width 
(Eq. 6 in Table 2) can provide accurate estima-
tions of Bergenia  purpurascens leaf area across 
different elevation ranges. Because leaf width can 
be easily measured in the field, this model would 
enable researchers to make non-destructive meas-
urements or repeated measurements on the same 
leaves. Such model can accurately estimate leaf 
areas of large quantities of B. purpurascens leaves 
in many experimental conditions across the whole 
timberline ecotone without the use of any expen-
sive instruments, e.g. a leaf area meter or digital 
camera with an image measurement software.
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