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Similarity matrices obtained using a null model and nine similarity coeffi cients based 
on an exhaustive and hypothetical set of presence/absence data matrices are generated 
and compared. Likewise, the biogeographic classifi cations obtained from an empirical 
set of data (the genera of Asteraceae of Mexico) and from the application of the same 
nine similarity coeffi cients and three cluster methods are compared. It is concluded 
that differences in the classifi cations generated from different similarity coeffi cients 
can be of almost 50% with the set of hypothetical matrices and more than 70% with 
the empirical data. The kind of clustering method (single, complete, or average) also 
generates differences in the classifi cation topologies, even when using the same simi-
larity coeffi cient. The empirical data produced similar topologies in 51% to 85% of 
the cases. Due to the dependence among the similarity coeffi cients, the cluster method 
used, and the generated classifi cations, it is concluded that classifi cations obtained 
through the use of different similarity coeffi cients or cluster methods are not compara-
ble. The most similar classifi cation topologies were obtained from the use of the Jac-
card and Sorensen-Dice similarity coeffi cients. They also showed the lowest number 
of poorly informative structures.

Key words: Asteraceae, cluster analyses, null models, quantitative biogeography, simi-
larity coeffi cients

Introduction

Each day more precise biogeographic data are 
available. They have also been ever more fre-
quently used to classify areas based on knowl-
edge of the distribution patterns of their biota.

Numerous tools are currently available for 
applying numerical methods to biogeographic 
analyses. They have contributed to background 

knowledge that better describes and explains 
the geographical distribution patterns of organ-
isms. However, analyses carried out with dif-
ferent numerical methods do not always arrive 
at the same result, mostly due to the variables 
selected (Crovello 1981, Hubálek 1982). There-
fore, understanding the behavior of a particular 
method using a given set of variables is a crucial 
issue.
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Crovello (1981) pointed out that quantitative 
biogeographic analysis is a decision making proc-
ess. Among the decisions to be made are the defi -
nition of the operative geographical units (OGUs), 
and the selection of a similarity coeffi cient or 
cluster method. Each of these decisions may lead 
to different results from the same data set.

A general methodology to carry out a quan-
titative biogeographical analysis uses a data set 
arranged as a matrix that scores the presence-
absence of taxa (e.g., species) for each OGU 
selected (see Bricks 1987: fi g. 1). The data matrix 
is transformed into a similarity (or dissimilarity) 
matrix to compare how similar (or different) each 
pair of OGUs are. Finally, the similarity matrix 
is used to carry out a cluster analysis, where one 
of several cluster algorithms must be chosen to 
generate a classifi cation of the OGUs. The latter 
will help in proposing a geographical regionaliza-
tion that supposedly has biological signifi cance 
(Crovello 1981, McLaughlin 1986, Bricks 1987).

Different criteria to evaluate the similarity 
between pairs of OGUs, as seen in the similar-
ity coeffi cients, will lead to different classifi ca-
tions. To what extent does the selection of one 
or another similarity index infl uence the result-
ing biogeographical classifi cations? This is a 
question that requires a response in view of the 
increasing number of analyses using the general 
methodology outlined above.

The literature documents the need to incor-
porate null models as a test of biogeographical 
hypotheses (Simberloff 1983, Craw 1989, Gotelli 
& Graves 1996). The null probability concept as 
the basis for constructing up null models has 
been discussed by Simberloff (1983), who has 
applied it to different biogeographical school 
methodologies (e.g. Simberloff 1978). Gotelli 
and Graves (1996) summarize the methods used 
to construct up null models.

The aim of this paper is to determine how the 
selection of a similarity coeffi cient affects result-
ing biogeographical classifi cations when using 
methods of quantitative biogeography. 

Methods

The classifi cation of OGUs into higher level bio-
geographical units can be considered a process 

that selects one of many possible combinations. 
Naturally, the more OGUs being analyzed, the 
larger the number of possible combinations. 
In this paper we analyze with a combinatory 
approximation the different possible classifi ca-
tions resulting from the use of different similar-
ity coeffi cients.

Two sources of information were used to 
investigate how the similarity coeffi cients affect 
biogeographic classifi cations. The fi rst is a null 
model approach (Gotelli & Graves 1996) using 
an exhaustive set of hypothetical matrices of 
three OGUs and three, four, and fi ve attributes 
(species or taxa), and comparing the classi-
fi cation topologies obtained after the cluster 
analysis. The second uses an empirical data set, 
a presence/absence data matrix of the genera of 
Mexican Asteraceae (368 genera), and the 32 
political states (OGUs) of Mexico.

Possible classifi cations

Part of the analysis was carried out on a set of 
all possible classifi cations of three OGUs. A 
presence/absence data matrix of three OGUs 
and three taxa can be ordered in 512 (29) pos-
sible combinations (each of the nine cells can 
be equally scored as an absence or a presence). 
Likewise, a data matrix of three OGUs and four 
taxa will have 4096 (212) possible combinations, 
and one with three OGUs and fi ve taxa 32 768 
(215) possible combinations.

Next, any of these equally possible datasets 
is transformed into a similarity matrix by using a 
similarity coeffi cient. This coeffi cient will trans-
form the raw presence/absence data into values 
that measure how similar two OGUs are based 
on the number of taxa shared. The transformed 
similarity matrix is now a triangular matrix, 
because both halves contain the same data 
(Sneath & Sokal 1973).

Finally, the similarity matrix is used to con-
struct a tree graph or dendrogram that will depict 
the relationships among the OGUs, based on the 
similarity values. This dendrogram (the topology 
used for the classifi cation) is used to group the 
OGUs in higher level units that fi nally will be 
useful to propose a regionalization of the study 
area.
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To compare the classifi cations obtained, we 
used the triplets method, similar to the quartet 
method (Estabrook et al. 1985). This method 
determines a criterion when a triplet has the 
same arrangement in two dendrograms. For a 
binary tree with n terminal leaves (OGUs) there 
are n(n – 1)(n – 2)/6 triplets (Page 1993). Thus, 
for example the data matrix for the genera of 
Asteraceae of Mexico, which includes 32 OGUs, 
each classifi cation includes 4960 triplets. The 
triplets method is more relaxed than that of 
quartets, and we consider it more appropriate in 
that it reduces overestimates of the differences 
among the classifi catory topologies obtained in 
the dendrograms.

Matrix structures

In addition to analyzing the classifi cation topolo-
gies (dendrograms) obtained from different simi-
larity coeffi cients, the structure of the similarity 
matrices is likewise analyzed for the possible 
arrangement of values the matrices can pro-
duce (this arrangement is here referred to as the 
‘matrix structureʼ, and can show equal, larger, or 
lower relationships among three pairs of OGUs). 
For example, a three-OGUs data matrix results in 
a similarity matrix that can produce 13 different 
equally possible hierarchical values (Table 1).

Each arrangement (matrix structure, Table 1) 
was then associated with one or more classifi ca-
tion topologies, using a cluster algorithm (Fig. 
1). Thus the most helpful structures to select the 
similarity coeffi cients that produce a single den-
drogram were determined.

We employed the following rules to evalu-
ate the arrangements of the similarity values in 
a data matrix:

a.  Poorly informative structures: those with the 
three pairs of OGUs equal in values (AB = 
BC = AC) or those in which the similarity 
coeffi cient cannot be applied because the 
denominator is zero.

b.  Half informative structures (enclosing struc-
tures): those that produce several dendro-
grams due to equal numerical values between 
two pair of OGUs in the similarity matrix 
(for example AB = AC > BC.)

c.  Highly informative structures: structures 
with different values among the three pairs of 
OGUs that thus produce a single dendrogram 
(for example AB > AC > BC.)

The present study emphasizes the infl uence 
of the similarity coeffi cients in the construction 
of dendrograms. However, based on the former 

 A         B      C

7,

8, 9

     2      3

    1

4,

10, 11

5,

12, 13

6

 A        C       B           B       C       A

Table 1. The 13 equally possible hierarchical values 
(matrix structures) that can produce a similarity matrix 
obtained from an original data matrix of three OGUs 
(A, B, and C) (=, > or < indicate the relative order of 
the similarity values, that is, equal, larger than, or lower 
than.) The structures are arranged according to their 
information content.

Poorly informative structures:
 01. AB = BC = AC
Half informative structures:
 02. AB = AC > BC
 03. AB = BC > AC
 04. AB = BC < AC
 05. AB = AC < BC
 06. BC = AC > AB
 07. BC = AC < AB
Highly informative structures:
 08. AB > AC > BC
 09. AB > BC > AC
 10. AC > BC > AB
 11. AC > AB > BC
 12. BC > AB > AC
 13. BC > AC > AB

Fig. 1. Correspondence between matrix structures and 
classifi cation topologies. The numbers correspond to 
matrix structures in Table 1.
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rules, it is possible to explore criteria for evaluat-
ing coeffi cients behavior.

It is important to point out that several matrix 
structures are associated with just one of the 
classifi cation topologies (highly informative 
structures), while others can be associated with 
more than one (poorly or half informative struc-
tures) (Fig. 1). This arrangement is independent 
of the clustering method used (either single or 
complete linkages, or UPGMA).

For each data matrix, nine similarity matrices 
were produced by applying nine similarity coef-
fi cients (Table 2). Each similarity matrix was 
defi ned as poorly informative, half informative, 
or highly informative.

Empirical analysis

In addition to evaluating the behavior of the 
similarity coeffi cients relative to the biogeo-
graphic classifi cations depicted as dendrograms 
based on theoretical matrices of three OGUs and 
three, four and fi ve taxa, we conducted a simi-
lar analysis with empirical data: the genera of 
Asteraceae of Mexico. A presence/absence data 
matrix of 368 genera in the 32 political states 
of Mexico was transformed into nine similar-
ity matrices using nine different coeffi cients 
(Table 2). Likewise, the dendrograms obtained 
from the use of three cluster algorithms (single 
linkage, complete linkage, and UPGMA) were 
analyzed. The analyses were made following the 
same procedure as with the theoretical data sets, 
that is, the dendrograms were compared with 

the triplets method to evaluate the differences 
resulting from the use of different similarity 
coeffi cients and different cluster algorithms, as 
well as the same coeffi cient but different cluster 
algorithms.

Results

Table 3 shows the percentages of matrix struc-
tures generated with each data matrix analyzed 
using the nine similarity coeffi cients cited in 
Table 2. In the three data matrices, the coef-
fi cients with the largest percentages of poorly 

Table 2. Similarity coeffi cients used in the analysis.

Simpson a/min[(a + b),(a + c)]
Jaccard a/(a + b + c)
Braun-Blanquet a/max[(a + b),(a + c)]
Sorensen-Dice a/[a + 0.5(b + c)]
Kulczynski 1 a/(b + c)
Kulczynski 2 0.5[a/(a + b) + a/(a + c)]
Fager a/[(a + b)(a + c)]0.5

 – 0.5{max[(a + b),(a + c)]}
Otsuka a/[(a + b)(a + c)]0.5

Correlation ratio a2/[(a + b)(a + c)]

a = number of taxa (attributes) present in both OGUs
b = number of taxa present only in the fi rst OGU
c = number of taxa present only in the second OGU

Table 3. Percentages of structures, arranged according 
to their information content, obtained from the use of 
nine similarity coeffi cients in three different group matri-
ces (Poorly = poorly informative; Half = Half informa-
tive; Highly = Highly informative).

Similarity coeffi cient Poorly Half Highly

Three taxa three OGUs group matrices
Simpson 50.6 42.4 7.0
Jaccard 15.0 67.4 17.6
Braun-Blanquet 18.5 70.9 10.5
Sorensen-Dice 15.0 67.4 17.6
Kulczynski 1 27.3 55.1 17.6
Kulczynski 2 57.8 35.2 7.0
Fager 36.7 45.7 17.6
Otsuka 36.7 45.7 17.6
Correlation ratio 43.7 49.2 7.0

Four taxa three OGUs group matrices
Simpson 34.8 22.1 43.1
Jaccard 8.4 14.5 77.1
Braun-Blanquet 12.8 20.6 66.6
Sorensen-Dice 8.4 14.5 77.1
Kulczynski 1 13.2 17.7 69.1
Kulczynski 2 37.3 22.1 40.6
Fager 21.2 24.7 54.1
Otsuka 21.2 14.5 64.3
Correlation ratio 26.6 18.6 54.8

Five taxa three OGUs group matrices
Simpson 23.0 24.7 52.3
Jaccard 7.5 13.1 82.4
Braun-Blanquet 8.3 20.9 70.9
Sorensen-Dice 7.5 13.1 82.4
Kulczynski 1 6.2 14.3 79.5
Kulczynski 2 22.1 23.6 54.3
Fager 11.6 21.9 66.4
Otsuka 11.6 14.7 73.6
Correlation ratio 14.4 20.5 65.1
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informative structures generated were Simpson 
and Kulczynski 2. On the other hand, the coef-
fi cients that generated in the three data matrices 
the largest percentages of highly informative 
structures were Jaccard and Sorensen-Dice.

Because different classifi cation topologies 
may be produced by one similar structure, it is 
important to point out that the choice of a coef-
fi cient will affect qualitatively the results of the 
biogeographical analysis. Only two coeffi cients 
(Jaccard and Sorensen-Dice) produced identical 
results (matches) both in the matrix structures 
and the classifi cation topologies obtained. Those 
with lower percentages of matches were Fager 
and Braun-Blanquet with 38.0%, 36.1% and 
39.2% of identical matrix structures for three, 

four and fi ve taxa matrices, and 50.2%, 56.0% 
and 60.5% of identical triplets for three, four and 
fi ve taxa matrices. The results point out that two 
equally feasible biogeographical classifi cations 
may be obtained from the same data matrix by 
using different similarity coeffi cients, ranging 
from 50.2% to 100%.

The analysis of the genera of Asteraceae of 
Mexico also showed contrasting results, parallel 
to those obtained from the theoretical analysis. 
Table 4 compares the classifi cation topologies 
obtained from the use of three different cluster-
ing methods. Percentages of similar topologies 
showed differences among the coeffi cients used. 
They go from 29.5% (Braun-Blanquet-Correla-
tion Ratio, single linkage) to 100% (for example 

Table 4. Percentages of identical classifi cation topologies (triplets) obtained from the use of nine different similar-
ity coeffi cients and three cluster methods, applied to a presence/absence data matrix of the genera of Asteraceae 
(368) occurring in the states of Mexico (32).

 1  2 3 4 5 6 7 8 9

Complete linkage
(1) Simpson  100.0
(2) Jaccard 67.5 100.0
(3) Braun-Blanquet 60.6 87.4 100.0
(4) Sorensen-Dice 67.5 100.0 87.4 100.0
(5) Kulczynski 1 67.5 100.0 87.4 100.0 100.0
(6) Kulczynski 2 82.4 73.7 69.8 73.7 73.7 100.0
(7) Fager 68.5 61.2 56.0 61.2 61.2 77.6 100.0
(8) Otsuka 67.5 100.0 87.8 100.0 100.0 73.7 61.2 100.0
(9) Correlation ratio 71.2 66.6 62.7 66.6 66.6 71.6 66.4 66.6 100.0

Single linkage
(1) Simpson 100.0
(2) Jaccard 42.6 100.0
(3) Braun-Blanquet 35.4 79.7 100.0
(4) Sorensen-Dice 42.6 100.0 79.7 100.0
(5) Kulczynski 1 68.9 100.0 79.7 100.0 100.0
(6) Kulczynski 2 67.8 52.0 46.6 52.0 52.0 100.0
(7) Fager 41.7 39.1 30.1 39.1 39.1 53.6 100.0
(8) Otsuka 54.2 94.9 81.9 94.9 94.9 55.0 37.1 100.0
(9) Correlation ratio 100.0 29.8 29.5 29.8 29.8 50.4 31.5 32.4 100.0

UPGMA
(1) Simpson 100.0
(2) Jaccard 61.0 100.0
(3) Braun-Blanquet 55.7 72.1 100.0
(4) Sorensen-Dice 61.1 100.0 72.1 100.0
(5) Kulczynski 1 54.5 83.6 66.2 83.6 100.0
(6) Kulczynski 2 74.8 72.3 64.0 77.3 69.6 100.0
(7) Fager 74.7 66.2 50.2 66.2 55.9 75.4 100.0
(8) Otsuka 62.7 88.1 72.7 88.1 78.3 69.5 56.7 100.0
(9) Correlation ratio 62.5 45.6 52.2 45.6 39.4 53.4 59.7 49.5 100.0
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Table 5. Percentages of identical classifi cation topolo-
gies (triplets) obtained with the three cluster methods 
applied to a presence/absence data matrix of the 
genera of Asteraceae (368) occurring in the states of 
Mexico (32).

 Complete Complete Single
 vs. Single vs. UPGMA vs. UPGMA

Simpson  52.7 68.2 60.5
Jaccard  66.2 84.1 71.9
Braun-Blanquet 69.7 79.9 73.3
Sorensen-Dice 66.2 84.1 71.9
Kulczynski 1 66.2 78.3 76.6
Kulczynski 2 55.2 73.4 61.1
Fager 51.0 73.0 58.5
Otsuka 64.8 77.7 69.2
Correlation ratio 47.1 64.7 62.3

Jaccard–Sorensen-Dice in the three clustering 
methods).

Table 5 shows the percentages of similar 
classifi cation topologies of Table 4, comparing 
the same similarity coeffi cient but differing in 
clustering method. In all cases similar topolo-
gies never matched totally; values ranged from 
51.0 (Complete linkage vs. Single linkage, 
based on Fager) to 84.1% (Complete linkage vs. 
UPGMA, based on Jaccard and Sorensen-Dice). 
The Complete Linkage and UPGMA methods 
produced the greatest number of matching clas-
sifi cation topologies, no matter the similarity 
coeffi cient used (Table 5). The Complete and 
Single Linkage methods produced the lesser 
matching classifi cation topologies. The differ-
ences are expected because the UPGMA method 
is intermediate among the Complete Linkage 
and the Single Linkage methods, which use 
respectively the maximum and minimum simi-
larity values.

Discussion and conclusion

The greatest number of similar classifi cation topol-
ogies were obtained from the use of the Jaccard 
and Sorensen-Dice similarity coeffi cients. They 
also showed the least number of poorly informa-
tive structures. The best behavior of these coeffi -
cients agree with the results presented by Hubálek 
(1982), who concluded that these are the best coef-
fi cients based on a series of specifi c criteria.

Our results do not agree with that of Sánchez 
and López (1988), who concluded that Simpsonʼs 
coeffi cient was adequate for biogeographical 
studies. This coeffi cient, along with Kulczynski 
2 produced lower percentages of highly informa-
tive structures among nine similarity coeffi cients 
analyzed (Table 3). Also, they showed the lowest 
percentage values when applied to the empirical 
data (Tables 4 and 5). Based on our results, it is 
surprising that Hubálek (1982) included Kulc-
zynski 2 as a “good” coeffi cient, along with Jac-
card and Sorensen-Dice.

Our analysis of empirical data resulted in 
classifi catory topologies as different as 51% 
(Table 4), depending on the clustering method 
used. The results indicate that care should be 
used in selecting a clustering method. The clus-
tering method defi nitely infl uences strongly the 
classifi cationʼs topology.

Although there are no solid arguments in 
favor of a particular similarity coeffi cient, the 
analyses of their behavior and properties (see 
also Hubálek 1982, Sánchez & López 1988) 
help guide the choice of a coeffi cient. However, 
if several coeffi cients are to be used, additional 
criteria such as those evaluated in this paper 
can be used. Our results suggest that based on 
the number of poorly informative structures 
generated, the best index to use is Jaccard or 
Sorensen-Dice, followed by Braun-Blanquet or 
Kulczynski 1.

The biogeographical classifi cations pro-
duced by clustering methods rely strongly on 
the similarity coeffi cient and the clustering 
methods used. Thus, as our results indicate, the 
classifi cations obtained from different data sets 
employing different similarity coeffi cients and 
clustering methods are not comparable. These 
classifi cations obtained by quantitative methods, 
should be used as heuristic guides to defi ne bio-
geographical regions. They must be compared 
with alternative forms of analysis, for example, 
using phylogenetic principles as in PAE analyses 
(Rosen 1988) or panbiogeographic proposals 
(Craw 1989) to avoid relying only on a single 
interpretation.

In this paper we use null models design prin-
ciples in similarity coeffi cients and clustering 
methods, in an equivalent way to the equiprob-
able cladograms of Simberloff (1983). As did 
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Simberloff, we quantifi ed the differences and 
probabilities shown by similar methods, inde-
pendent of the data used in a biogeographical 
study. Our analysis could be considered an 
additional null model that explores the proper-
ties, goodness and failures of different similarity 
coeffi cients and clustering methods to biogeo-
graphical presence/absence data.
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