Taxonomy of the *Lessingianthus saltensis* (Vernonieae, Asteraceae) species complex

María Betiana Angulo & Massimiliano Dematteis*

*Instituto de Botánica del Nordeste (UNNE-CONICET), Casilla de Correo 209, 3400 Corrientes, Argentina (*corresponding author's e-mail: mdematteis@agr.unne.edu.ar)*

In this study, three species of *Lessingianthus saltensis* complex are described and illustrated, including two new species. The new taxa *L. membranifolius* and *L. coriarius* are diploid (2n = 2x = 32), while *L. saltensis* is tetraploid (2n = 4x = 64). *Lessingianthus membranifolius* is distinguished from the other taxa in the complex by the membranaceous leaves, phyllaries with a rounded apex and leaf blades basally obtuse with serrate margins. *Lessingianthus coriarius* can be easily separated from the other taxa of the group by the combination of coriaceous leaves, phyllaries apically acute and leaf blades acute at the apex, with entire margins. A lectotype is designated for *L. saltensis*.

Introduction

The genus *Lessingianthus* (Vernonieae, Asteraceae) was initially established to accommodate the species originally placed in *Vernonia* sect. *Lepidaploa* subsection *Macrocephalae* (Bentham & Hooker 1873). It is widely distributed in South America, including Venezuela, Colombia, Peru, Brazil, Bolivia, Paraguay, Argentina and Uruguay (Robinson 2007). The species are perennial herbs or shrubs with xylem-podia, having medium- or large-sized heads and seriate-cymose inflorescences (Robinson 1988). The genus currently comprises more than 120 species that mostly occur in *campo cerrado* and *campo rupestre* habitats (Bremer 1994).

This group can be distinguished from the other American members of the tribe by its pollen type, anther appendages and chromosome number, among other features. The pollen grains of *Lessingianthus* have been named type “B” and they are tricolporate, echinolophate, with a discontinuous tectum, very long germinal furrows that converge at the poles, lacunae disposed in a regular pattern, and lacking a polar lacuna (Keeley & Jones 1979, Angulo & Dematteis 2010). The anther appendages in *Lessingianthus* commonly lack glands, whereas some related genera have glandular appendages (Robinson 1988, Dematteis 2007). The basic chromosome number is x = 16, differing from the majority of the New World Vernonieae which have a base number of x = 17 (Dematteis 2002, Angulo & Dematteis 2012).

There are several closely related and morphologically similar species complexes within *Lessingianthus* that may hybridize naturally. Among these complexes are those formed around *L. glabratus*, *L. mollissimus*, *L. rubricaulis* and *L. saltensis* (Angulo & Dematteis 2009a). At present, only the *L. rubricaulis* complex has been studied (Dematteis 2004). This complex includes four
species, *L. rubricaulis*, *L. laniferus*, *L. pusillus* and *L. pseudoincanus*, that can be distinguished by their habit, underground parts, indumentum type, and leaf size and shape.

In the present study, we analyzed the *L. saltensis* complex, which is distributed in the northwestern Argentina and Bolivia and shows wide morphological and karyological variation. The analysis of external morphological features, pollen morphology, microcharacters and chromosomes revealed three species, two of them new. These species are described, including full synonymy and a key to distinguish the taxa.

Material and methods

This study was based on morphological analysis of specimens deposited at BAB, CORD, CTES, G, K, LP and SI (Holmgren et al. 1990). The line drawings were made from herbarium specimens using a camera lucida with a Leica MZ6 stereo microscope. The journal abbreviations are from Botanico Periodicum Huntianum (Lawrence et al. 1968).

Pollen samples were obtained by removing one or two florets from herbarium specimens of the species. The pollen grains were acetolysed according to the procedure suggested by Erdtman (1966). For light microscopy (LM) the pollen samples were mounted in glycerin jelly on glass slides and then examined with a Zeiss Axioplan microscope. Permanent slides were deposited at the Palynological Laboratory of the Universidad Nacional del Nordeste (PAL-CTES). The terminology applied for pollen grain description in general follows Erdtman (1966) and Punt et al. (2007).

Mitotic chromosome preparations were made from root meristems obtained from germinating seeds. The roots were pretreated for about five hours in 0.002 M 8-hydroxyquinoline solution at room temperature, fixed in 3:1 absolute alcohol/acetic acid and then stained using Feulgen’s technique. Permanent microscope slides were prepared by mounting in Euparal. In all samples at least 20 counts of 7–10 individuals were made to verify the observations. Nomenclature used for the karyotype description is that suggested by Levan et al. (1964). The chromosome morphology was determined using the centromeric index (ci = [short arm] × 100/[total chromosomal length]). Accordingly, the chromosomes were classified into metacentrics (m): 50–37.5, submetacentrics (sm): 37.5–25 and subtelocentrics (st): 25–12.5. The karyological parameters, total length of karyotype (TLK), the mean chromosome length (ML), the average centromeric index (CI) and the ratio between the longest and the shortest chromosome pair (R) were evaluated. The karyotype asymmetry has been determined using the intrachromosomal (A1) and interchromosomal index (A2) suggested by Romero Zarco (1986).

To examine micro-characters, the florets were obtained from herbarium specimens and softened in boiling water to which a drop of detergent was added, dissected under a stereomicroscope, mounted in Hoyer’s solution (Anderson 1954) and studied with a light microscope.

Results and discussion

Chromosome number and karyotype

Lessingianthus saltensis was found to be tetraploid with 2n = 4x = 64 (Fig. 1A), which agrees with prior counts from a population of Jujuy (Argentina) by Dematteis (1998). The chromosome numbers of *L. membranifolius* (Fig. 1E) and *L. coriarius* (Fig. 1G) were determined here for the first time. Both taxa were diploids having 2n = 2x = 32. The somatic chromosome number, karyotype formula, mean chromosome length, total length of karyotype, centromeric index and asymmetric index of the species in the *L. saltensis* complex are indicated in Table 1 (see also Fig. 2).

Pollen morphology

The species of the *L. saltensis* complex all have type “B” pollen grains (Fig. 1B and C). This type of pollen grain is tricolporate, echinolophate, with a discontinuous tectum, very long germinal furrows that converge at the poles, and lacunae distributed in a regular pattern but lacking a polar lacuna (Keeley & Jones 1979, Dematteis

Morphological characters

Previously described *Lessingianthus* species are distinguished from the other American members of the tribe by their eglandular anther appendages, lack of a basal style node, and cubic crystals in the achene wall (Robinson 1999). The species of the *L. saltensis* complex lack of basal stylar node. The anther appendages are eglandular and the species have anthers basally calcarate and sagittate similar to those found in the congeneric taxa. Additionally, they have glandular trichomes on the corolla lobes (Fig. 1F). The surface of the cypsela have eglandular trichomes in *L. coriarius*, while *L. saltensis* has eglandular and glandular trichomes (Fig. 1D) and the cypsela of *L. membranifolius* are glabrous. The crystals are cubic and prismatic of varying size on the fruits walls (Fig. 1I). Numer-
Taxonomic treatment

The taxa are described and illustrated below and they can be distinguished by the following key.

Key to species of the *Lessingianthus saltensis* complex

1. Fruits with glandular trichomes; chromosome number 2n = 64 ... *L. saltensis*
2. Fruits without glandular trichomes; chromosome number 2n = 32 ... 1
3. Leaves membranaceous, base obtuse, margins serrate; phyllaries with rounded apex *L. membranifolius*
4. Leaves coriaceous, base attenuate, margin entire; phyllaries with acute apex. *L. coriarius*

Lessingianthus saltensis (Hieron.) H. Rob.

Table 1. Chromosome number, karyotype formula, chromosome size, total chromosome length, centromeric index ± SE (CI); and intra-(A₁) and interchromosomal (A₂) indexes in the species of the *Lessingianthus saltensis* complex.

<table>
<thead>
<tr>
<th>Species</th>
<th>2n</th>
<th>Karyotype formula</th>
<th>Chromosome size [mean (range)] (µm)</th>
<th>Total chromosome length (µm)</th>
<th>CI</th>
<th>A₁</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. saltensis</td>
<td>64</td>
<td>46 m + 18 sm</td>
<td>1.51 (1.32–2.15)</td>
<td>96.64 ± 0.20</td>
<td>42.40 ± 0.15</td>
<td>0.247</td>
<td>0.231</td>
</tr>
<tr>
<td>L. membranifolius</td>
<td>32</td>
<td>22 m + 10 sm</td>
<td>1.73 (1.08–2.15)</td>
<td>55.96 ± 0.04</td>
<td>39.82 ± 0.50</td>
<td>0.313</td>
<td>0.256</td>
</tr>
<tr>
<td>L. coriarius</td>
<td>32</td>
<td>28 m + 4 sm</td>
<td>1.74 (1.04–3.72)</td>
<td>54.58 ± 0.04</td>
<td>42.42 ± 0.30</td>
<td>0.260</td>
<td>0.345</td>
</tr>
</tbody>
</table>

Table 2. Polar axis (P), equatorial diameter (E), and their ratio (P/E), exine thickness, spine length, and lacunae diameter of pollen grains from species of the *L. saltensis* complex. Shown are minimum(mean)maximum values.

<table>
<thead>
<tr>
<th>Species</th>
<th>P (µm)</th>
<th>E (µm)</th>
<th>P/E</th>
<th>Shape</th>
<th>Exine thickness (µm)</th>
<th>Spine length (µm)</th>
<th>Lacuna diameter (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. saltensis</td>
<td>42.1(43.5)44.8</td>
<td>40.8(43.2)44.8</td>
<td>1.01</td>
<td>prolate-spheroidal</td>
<td>5.4(6.1)6.8</td>
<td>2.0(2.7)3.4</td>
<td>8.1(9.6)10.8</td>
</tr>
<tr>
<td>L. membranifolius</td>
<td>46.2(48.2)51.6</td>
<td>44.8(47.6)50.3</td>
<td>1.01</td>
<td>prolate-spheroidal</td>
<td>5.4(6.1)6.8</td>
<td>2.0(2.7)3.5</td>
<td>9.5(10.3)10.8</td>
</tr>
<tr>
<td>L. coriarius</td>
<td>51.6(52.9)55.7</td>
<td>50.3(52.5)53.0</td>
<td>1.01</td>
<td>prolate-spheroidal</td>
<td>5.0(5.7)6.5</td>
<td>2.0(2.7)3.5</td>
<td>9.5(11.5)13.6</td>
</tr>
</tbody>
</table>

Fig. 2. Idiograms of species in the *Lessingianthus saltensis* complex. — A: *L. saltensis*, 2n = 64 = 46 m + 18 sm. — B: *L. membranifolius*, 2n = 32 = 22 m + 10 sm. — C: *L. coriarius*, 2n = 32 = 28 m + 4 sm.

uous idioblasts were observed in the three species of the complex (Fig. 1H and Table 3).
Erect branched shrubs, 0.5–1.5 m tall. Stems glabrous or pubescent, leafy to apex. Leaves membranaceous, shortly petiolate, gradually decreasing in size towards stem apex. Leaf blades lanceolate to ovate-lanceolate, 6–9 cm long, 2.5–4 cm wide, entire or serrulate, acute and mucronulate at apex, basally attenuate, shortly pubescent on both leaves surface, pinnately nerved. Inflorescence seriate-cymose with numerous capitula. Capitula sessile, solitary. Bracts of inflorescence leafy, regularly reduced upwards, always longer than heads. Involucre campanulate, 7–9 mm high, 5–7 mm wide. Phyllaries in 5–6 series, appressed, apically rounded and mucronulate, pilose and ciliate on margin, inner phyllaries oblong-lanceolate, 7–9 mm high, 1.6–1.9 mm wide, middle phyllaries lanceolate, 5–6 mm high, 2.5–3 mm wide and outer ones oblong-lanceolate to ovate, 3.5–4 mm high, 2–2.5 mm wide. Florets purple, 12–25 per head. Corolla with glandular trichomes in lobes apex, 7–8 mm long. Anthers basally calcarate, sagittate, thecae 4–4.5 mm long, apical appendages lanceolate to ovate-lanceolate, 0.8 mm long. Style 7.5–8 mm long, without basal style node. Cypselas turbinate, ribbed, 2.5–3 mm long, shortly pubescent with glandular trichomes on fruit base, idioblasts among ribs, achene wall with cubic and prismatic crystals, carpopodium cylindrical. Pappus white, biseriate, inner bristles 6–7 mm long, outer scales lanceolate, fimbriate, variable length. Pollen grains type “B”. 2n = 64. Flowering and fruiting between December and August.

Distribution and Ecology: Distributed from southern Bolivia, Paraguay and western Brazil to northwestern and central Argentina in deciduous forests, between 340–1300 m a.s.l.

The original material studied by Hieronymus (1897) was deposited at B, which was destroyed in World War II. Therefore, the specimen of CORD is designated here as the lectotype because it is in accordance with the protologue.

Additional Specimens Examined:

Table 3. Morphological features of the species in the Lessingianthus saltensis complex.

<table>
<thead>
<tr>
<th>L. saltensis</th>
<th>L. membranifolius</th>
<th>L. coriarius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf size (cm)</td>
<td>6–9 × 2.5–4</td>
<td>10–11 × 4.5–5</td>
</tr>
<tr>
<td>Leaf apex</td>
<td>acute and mucronulate</td>
<td>acute</td>
</tr>
<tr>
<td>Leaf base</td>
<td>attenuate</td>
<td>obtuse</td>
</tr>
<tr>
<td>Leaf margin</td>
<td>entire or slowly serrate</td>
<td>serrate</td>
</tr>
<tr>
<td>Leaf texture</td>
<td>membranaceous</td>
<td>membranaceous</td>
</tr>
<tr>
<td>Phyllary apex</td>
<td>acute</td>
<td>rounded</td>
</tr>
<tr>
<td>Glandular trichomes on corolla lobes</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Basal stylar node</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Apical appendages of anthers</td>
<td>lanceolate to ovate-lanceolate</td>
<td>ovate-lanceolate</td>
</tr>
<tr>
<td>Anther bases</td>
<td>calcarate and sagittate</td>
<td>calcarate and sagittate</td>
</tr>
<tr>
<td>Achene indumentum</td>
<td>pilose</td>
<td>glabrous</td>
</tr>
<tr>
<td>Glandular trichomes of fruit</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Carpopodium</td>
<td>cylindrical to turbinate</td>
<td>cylindrical to turbinate</td>
</tr>
<tr>
<td>Crystals in the achene wall</td>
<td>cubic and prismatic</td>
<td>cubic and prismatic</td>
</tr>
<tr>
<td>Idioblasts</td>
<td>present</td>
<td>present</td>
</tr>
</tbody>
</table>

(*Lessingianthus membranifolius* M.B. Angulo, sp. nova (Fig. 3))

Erect shrubs 70–100 cm high. Stems striate, leafy to apex. Leaves sessile to subsessile, membranaceous, 10–11 cm long × 4.5–5 cm wide. Leaf blades ovate-lanceolate, serrate, acute at apex, basally obtuse, upper and lower surface shortly pubescent, pinnately nerved. Inflorescence terminal, seriate-cymose. Bracts of inflorescence leafy, longer than involucres. Capitula numerous, sessile, solitary, disposed on axil of leafy bracts. Involucre campanulate, 9–10 mm high × 7–9 mm wide. Phyllaries in 7–8 series, appressed, rounded and mucronulate at apex, pilose and ciliate on margin, inner phyllaries oblong-lanceolate, 7.5–8 mm long, 1.6–1.8 mm wide, middle phyllaries ovate-lanceolate, 4–5.5 mm long, 2.6–2.7 mm wide, outer phyllaries ovate-lanceolate, 3–4 mm long, 2.3–2.4 mm wide. Florets violet, 25–30 per head. Corolla 8–9 mm long, with glandular trichomes on lobes apex. Anthers basally calcarate, sagittate, 4.5–5 mm long, apical appendage non glandular, ovate-lanceolate, 0.6–0.7 mm long. Style 10–11 mm long, basal stylar node absent. Cypselas obconical, ribbed, glabrous, 4–4.5 mm long, with numerous idioblasts and cubic and prismatic crystals of varying size on fruit wall, carpododium cylindrical. Pappus biseriate, white, outer scales fimbriate, linear, variable length, inner bristles 6–8 mm long. Pollen grains type “B”. 2n = 32.

Almost all the available flowering specimens were collected between February and April.

Lessingianthus coriarius M.B. Angulo, **sp. nova** (Fig. 4)

Etymology: The specific epithet refers to the leathery leaves.

Erect shrubs 0.5–1 m high, branched toward inflorescence, with deciduous leaves on stem. Leaves coriaceus, subsessile, 4–4.5 cm long, 2.5–3 cm wide. Leaf blades ovate-lanceolate, entire, revolute at margin, apically acute, attenuate at base, shortly pubescent on both surfaces. Inflorescence cymose. Capitula numerous, sessile, solitary, disposed on axil of leafy bracts. Bracts of inflorescence leafy, gradually reduced upwards, longer than heads. Involucre campanulate, 9–11 mm high, 7–8 mm wide. Phyllaries in 6–8 series, appressed, acute and mucronulate at apex, pilose and ciliate on margin, inner phyllaries oblong-lanceolate, 7.5–8 mm long, 1.9–2 mm wide, middle phyllaries ovate-lanceolate, 6–6.5 mm long, 2.6–2.7 mm wide, outer ones ovate-lanceolate, 3.5–4 mm long, 2–2.3 mm wide. Florets violet, 15–30 per head. Corolla 7–8 mm long, with glandular trichomes on lobes tips. Anthers basally calcarate, sagittate, thecae 2–2.5 long, apical appendages ovate-lanceolate, 0.4 mm long. Style 8–8.5 mm long, basal nodule of style absent. Cypselas cylindrical to turbinate, ribbed, pubescent, 3–3.5 mm long, with idioblasts between ribs and cubic and prismatic crystals on their wall, carpododium cylindrical to turbinate. Pappus white, biseriate, outer scales lanceolate, fimbriate, 0.9 mm long, inner bristles, 6–7 mm long. Pollen grains type “B”. 2n = 32. Flowering and fruiting between February and May.

Distribution and habitat: This taxon grows in Bolivia, on stony soils in the Departments of Santa Cruz and Chuquisaca.

Acknowledgements

We would like specially to thank the keepers and staff of the visited herbaria for their collaboration. Mirta Liliana Gómez of the Instituto de Botánica del Nordeste prepared the drawings. This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), the Secretaría General de Ciencia y Técnica de...
la Universidad Nacional del Nordeste (SGCyT-UNNE) and the Myndel Botanica Foundation.

References

Bentham, G. & Hooker, J. D. 1873: Vernonieae. — In: *Genera

— Timber Press, Portland.
Dematteis, M. 2007: Taxonomic notes on the genus Chrysolaena (Vernonieae, Asteraceae), including a new species endemic to Paraguay. — Annales Botanici Fennici 44: 56–64.