Glandular hairs of the ovary: a helpful character for Asteroideae (Asteraceae) taxonomy?

Daniela Ciccarelli*, Fabio Garbari & Anna M. Pagni

Department of Biology, University of Pisa, via Luca Ghini 5, I-56126, Italy (*corresponding author’s e-mail: dciccarelli@biologia.unipi.it)

Received 19 Dec. 2005, revised version received 9 June 2006, accepted 14 June 2006

Surface microcharacters of the ovary of the Asteraceae were studied, especially biserial glandular hairs. Of 34 species belonging to the Asteroideae, only *Dittrichia viscosa*, *Pulicaria dysenterica*, *Bellis perennis*, *Tanacetum parthenium*, *Achillea maritima*, *Matricaria chamomilla*, and *Eupatorium cannabinum* possess glandular hairs on the ovary. Additional characters considered are hair morphology and distribution, cell number, and presence of subcuticular chambers and chloroplasts. The usefulness of glandular hairs of the ovary for taxonomic purposes is discussed.

Key words: Asteraceae, Asteroideae, glandular hairs, light microscopy, ovary, SEM, taxonomy

Introduction

In the Asteraceae both non-glandular and glandular hairs are present (Metcalfe & Chalk 1950). The non-glandular hairs are represented by numerous morphological types, whereas the glandular hairs are more homogeneous. The latter are usually formed of a peduncle and a head of one or many cells. The most common type, found in numerous species, is a biserial hair formed of five pairs of cells. Detailed studies of this type of hair, its morphology and ultrastructure have been carried out on plants of economic interest, such as *Dittrichia viscosa* (Werker & Fahn 1981), *Artemisia annua* (Duke & Paul 1993), *Artemisia nitida* (Corsi & Nencioni 1995), *Artemisia campestris* (Ascensão & Pais 1987), *Achillea millefolium* (Figueiredo & Pais 1994), *Helichrysum aureonitens* (Afolayan & Meyer 1995), and *Helichrysum stoechas* (Ascensão et al. 2001). Investigations referring to a supraspecific taxon are scarce. Carlquist (1958) analysed the structure and ontogenesis of glandular hairs of Madinae, demonstrating their taxonomic and evolutionary significance. Napp-Zinn and Eble (1980) took into consideration the glandular and non-glandular hairs of twenty genera of the Anthemideae. In the genus *Artemisia*, features of the glandular hairs are considered useful for the separation of *A. nova* from *A. arbuscula* and *A. tridentata* (Kelsey 1984).

Glandular hairs, in the Asteraceae, may be present both on the vegetative and floral parts. In the capitula they are found on the receptacle, bracts, corolla and also on the ovary. On the ovary surface, other types of hairs may also be present: twin hairs, of a characteristic double structure, and slime hairs, usually multicellular, involved in the production of mucilaginous
material (Roth 1977). The characters of the surface of the ovary and fruit have repeatedly been used for the delimitation of taxa at various levels in several families (Karcz 1996, Lane 1985). However, in the Asteraceae they are seldom used as key characters in floras, and when they are, the different types of hairs are only occasionally considered. The importance of cypsela features for the phylogeny and classification of the family is underlined in several recent works (An-derberg 1991, Karis 1993, Zhang & Bremer 1993, Bremer 1994). The present paper is a contribution to the study of the surface microcharacters of the ovary, focusing on biseriate glandular hairs. Its particular aim is to verify, through examples, the potential usefulness of glandular hairs for taxonomical and phylogenetic studies.

Table 1. Species of subfamily Asteroideae collected from Migliarino-San Rossore-Massaciuccoli Natural Park. Species marked with an asterisk (*) possess glandular hairs on the ovary.

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inuleae</td>
<td>* Dittrichia viscosa (L.) Greuter</td>
</tr>
<tr>
<td></td>
<td>Inula conyzae Griesselich</td>
</tr>
<tr>
<td></td>
<td>Limbarda crithmoides (L.) Dumort.</td>
</tr>
<tr>
<td></td>
<td>* Pulicaria dysenterica (L.) Bernh.</td>
</tr>
<tr>
<td></td>
<td>Pulicaria odor (L.) Rchb.</td>
</tr>
<tr>
<td></td>
<td>Pulicaria sicula (L.) Moris</td>
</tr>
<tr>
<td>Gnaphalieae</td>
<td>Filago pyramidata L.</td>
</tr>
<tr>
<td></td>
<td>Filago germanica L.</td>
</tr>
<tr>
<td></td>
<td>Gnaphalium uliginosum L.</td>
</tr>
<tr>
<td></td>
<td>Helichrysum italicum (Roth.) Don.</td>
</tr>
<tr>
<td></td>
<td>Helichrysum stoechas (L.) Moench</td>
</tr>
<tr>
<td>Astereae</td>
<td>Tripolium pannonicum (Jacq.) Dobrocz.</td>
</tr>
<tr>
<td></td>
<td>* Bellis perennis L.</td>
</tr>
<tr>
<td></td>
<td>Erigeron canadensis L.</td>
</tr>
<tr>
<td></td>
<td>Erigeron acris L.</td>
</tr>
<tr>
<td></td>
<td>Erigeron karwinskianus DC.</td>
</tr>
<tr>
<td>Anthemideae</td>
<td>* Tanacetum parthenium (L.) Sch.-Bip.</td>
</tr>
<tr>
<td></td>
<td>Artemisia coerulescens L.</td>
</tr>
<tr>
<td></td>
<td>Achillea millefolium L.</td>
</tr>
<tr>
<td></td>
<td>* Achillea maritima (L.) Ehrend.</td>
</tr>
<tr>
<td></td>
<td>Anthemis arvensis L.</td>
</tr>
<tr>
<td></td>
<td>Anthemis cotula L.</td>
</tr>
<tr>
<td></td>
<td>Coleostephus myconis (L.) Cass.</td>
</tr>
<tr>
<td></td>
<td>Leucanthemum paliens (Gay) DC.</td>
</tr>
<tr>
<td></td>
<td>Leucanthemum vulgare Lam.</td>
</tr>
<tr>
<td></td>
<td>* Matricaria chamomilla L.</td>
</tr>
<tr>
<td>Senecioneae</td>
<td>Jacobae erratica (Bertol.) Fourn.</td>
</tr>
<tr>
<td></td>
<td>Senecio luidus L.</td>
</tr>
<tr>
<td></td>
<td>Senecio vulgaris L.</td>
</tr>
<tr>
<td>Heliantheae</td>
<td>Bidens frondosa L.</td>
</tr>
<tr>
<td></td>
<td>Bidens tripartita L.</td>
</tr>
<tr>
<td></td>
<td>Xanthium italicum Moretti</td>
</tr>
<tr>
<td></td>
<td>Xanthium strumarium L.</td>
</tr>
<tr>
<td>Eupatorieae</td>
<td>* Eupatorium cannabinum L.</td>
</tr>
</tbody>
</table>

Material and methods

The plant material examined originated from a protected area (Migliarino-San Rossore-Massaciuccoli Natural Regional Park, Pisa, Italy) characterised by a high biological diversity. Restricted by the Park regulations, we randomly collected capitula from at least five individual plants of each species during the flowering and fruiting phases (years 2001–2003). The species studied are listed in Table 1. The 34 species examined belong to seven tribes: Inuleae, Gnaphalieae, Astereae, Anthemideae, Senecioneae, Heliantheae, Eupatorieae (classification and nomenclature in accordance with Bremer 1994 as modified by Greuter 2003a, 2003b, 2003c, Greuter et al. 2003).

Light microscopy (LM)

Sections (25 µm) of fresh capitula were cut using a Leitz 1720 cryostat at ~14°/16°C. Other sections (3 µm) were cut using a Leica 2055 microtome, after fixing the material in FAA (Sass 1958) and embedding it in LR White acrylic resin (SIGMA). All the material was stained with Toluidine Blue (TBO) (O’Brien & McCully 1981), a generic dye for DNA, cytoplasm and some cell wall components.

Fresh material was also observed under a light microscope without any staining procedure.

Scanning electron microscopy (SEM)

All the material was fixed in glutaraldehyde (2% with buffer solution at pH 7.4), dehydrated in a gradient of an alcohol and acetone mixture, criti-
cal point dried and sputter-coated with gold. The samples were examined at 15 KV using a Cambridge Stereoscan 90 SEM.

Results

Biseriate glandular hairs were found on the ovary of *Dittrichia viscosa*, *Pulicaria dysenterica*, *Bellis perennis*, *Tanacetum parthenium*, *Achillea maritima*, *Matricaria chamomilla*, and *Eupatorium cannabinum*. The typical base model (made up of ten cells: two basal cells, two of the peduncle and six of the secretory head) is present on the ovary of *B. perennis*, *T. parthenium*, *A. maritima*, *M. chamomilla* and *E. cannabinum*. In *B. perennis* and in *E. cannabinum* the number of head cells varies from six to eight, in *D. viscosa* and in *P. dysenterica* each series of the head hair is formed of six to nine cells; the apical cells are very large (Fig. 1). The hair morphology does not show any within-species variation.

The hairs can be distributed on the whole surface of the ovary as in *D. viscosa*, in *B. perennis* and in *E. cannabinum* (Fig. 2A–C); between the ribs as in *T. parthenium*, *A. maritima* (Fig. 2D, E) and *M. chamomilla* (A. Andreucci pers. comm.); and in the apical part of the ovary as in *P. dysenterica* (Fig. 2F). The hair distribution pattern seems to remain constant within a species.

The shape of the hair tip can vary from globular in *T. parthenium* (Fig. 3A) to fungiform in *E. cannabinum* (Fig. 3B), more or less clavate in *B. perennis* (Fig. 1) or cylindrical in *D. viscosa* (Fig. 3C) and in *P. dysenterica* (Fig. 3D).

All glandular hairs have, at full growth, a subcuticular chamber, a space coming out when the two layers of the cuticle become detached from the pecto-cellulosic wall (Fahn 2000). Its size can be very different among species while being usually uniform within a species. Among the plants analysed, *B. perennis* has the smallest subcuticular chamber (Fig. 1C) with regard to only the apical cells; *E. cannabinum* has a bigger chamber that gives the hair a fungiform appearance (Fig. 3B); a large spherical chamber is also present in *D. viscosa*, *P. dysenterica* and *A. maritima*. In the last species the chamber regards not only the apical but also the lower cells (Fig. 1F).

In the species studied, chloroplasts are present in all cells that form the head of the hair, except in the apical cells; in *B. perennis* also the apical cells have chloroplasts.

When the fruit matures the glandular hairs remain, but their structure often degenerates.

Discussion

The classification of Asteraceae remains in a state of flux. In a revision of the family, Bremer (1994) pointed out that, to provide a complete classification, new research and taxonomic revisions were necessary especially at the lower taxonomical levels. Even if molecular research has provided an important contribution to under-
standing the phylogeny of Asteraceae and the position of controversial taxa, morphological characters continue to be an irreplaceable source of information for phylogenetic studies. Currently, there is a sort of renaissance of morphology in plant systematics (Weber 2003).

The importance of cypsela characters for the systematic study of taxa, for clarifying their delimitation and establishing their phylogeny, has repeatedly been emphasised (Grau 1977, Heywood & Humphries 1977, Robinson & King 1977, Anderberg 1989, 1991, Karis 1993, Bremer 1994). The characters that are given most importance are general morphology, the presence of ribs, crystals in the epidermal cells, the structure of the carpopodium, the shape of the pappus, and the presence of cells with phytomelanin in the fruit wall. Lane (1985) and Crawford et al. (2001) reported that in the Asteraceae the morphological characters of the fruit were stable and genetically controlled, as had been demonstrated experimentally for other families. The non-glandular and glandular hairs, which are part of the surface microcharacters, are occasionally used in the classification, especially at generic and specific level (Källersjö 1986, Sanders & Clark 1987, Mukherjee & Sarkar 2001).

We studied 34 species of Asteroideae to verify if “glandular hairs of the ovary” can be used as a diagnostic character for taxonomical purposes. Biseriate hairs were found in species belonging to the tribes Inuleae (D. viscosa and P. dysenterica), Astereae (B. perennis), Anthemi-deae (T. parthenium, A. maritima and M. chamo-milla), and Eupatorieae (E. cannabinum). We considered hair morphology and distribution, cell number, subcuticular chamber and the presence of chloroplasts. The morphology and the number of cells that form the tip of the hair, while stable within species, show considerable

![Fig. 2](image-url)
interspecific variation. For example, *D. viscosa* and *P. dysenterica* (both in Inuleae) have cylindrical biseriate hairs made up of 12–18 cells, slightly different from the base model, i.e. five pairs of cells. The similar morphology could reflect the taxonomic closeness of the two taxa (Anderberg 1991, Eldenäs et al. 1996). Very complex hairs that represent an elaboration of the typical base model were observed by Carlquist (1958) in species of Madiinae. Glandular hairs formed by a big multicellular peduncle and a secretory head were found on the involucral bracts of *Siegesbeckia jorullensis* (Heinrich et al. 2002) of Heliantheae, which are dispersed as a whole, including the cypselas. The marked variability of hair morphology, also here evidenced, implies a need to improve our knowledge of glandular hairs of the ovary and the whole plant for a larger number of taxa. Nevertheless, also when we consider hairs that represent the base model, distribution, overall size, presence or absence of chloroplasts, and the subcuticular chamber show fine variations. Anyway, we did not observe any within-species variation of these characters among the species studied.

Regarding hair distribution, for example, all Anthemideae species with biseriate hairs here studied (*T. parthenium, A. maritima* and *M. chamomilla*) show the same inter-costal pattern.

The cells of the glandular hairs are characterised by a highly specialised cytoplasm (Lütge 1971, Cheniclet & Carde 1985). The presence of plastids and in particular chloroplasts in the head cells is easily observed under light microscope and indicates metabolic activity in the cells. Cheniclet and Carde (1985) associated the presence of plastids with the synthesis of terpenoids and/or their precursors.

The subcuticular chamber is quite variable among the species studied (Fig. 1). However, similar subcuticular chambers have been found in *Tanacetum parthenium, Achillea maritima* and *Matricaria chamomilla* (all Anthemideae), where several head cells are involved, and in *Dittrichia viscosa* and *Pulicaria dysenterica* (Inuleae), where only the apical cells are involved (Fig. 1). Also, the hairs of *E. cannabinum* are very similar in morphology, size and, especially, shape of the
subcuticular chamber to those of *Stevia rebaudiana* (Cornara et al. 2001). This is not surprising because both species belong to the Eupatorieae.

Glandular hairs, together with other characters, can thus indeed be of help in taxonomic and phylogenetic studies in the Asteraceae. Moreover, the presence or absence of glandular hairs may be of diagnostic value. For example, the separation of *Dittrichia* from *Inula* (Bremer 1994) is supported by our results, which show the presence of glandular hairs on the ovary of *D. viscosa* and their absence on the ovary of *I. conyzae*.

In the Asteraceae, glandular hairs are frequent not only on the capitula, but also on the vegetative parts of the plant. The secretion of terpenoids by these structures, shown by several studies (Ascensão et al. 2001, Heinrich et al. 2002, Pagni et al. 2003), may have many different functions. Some volatile terpenoids may attract pollinating insects to flowers, while others may protect the plant and its reproductive structures from destruction by herbivores and pathogens (Kelsey et al. 1984, Harborne 1993).

We plan to extend our studies on glandular hairs of the ovary to other Italian species of Asteroliae so as to assess the taxonomic usefulness of this character in a wider taxonomical context.

Acknowledgements

We are deeply grateful to Prof. Dr. Werner Greuter (Berlin) for his expert advice and helpful suggestions on the taxonomy of Asteroliae. Thanks are due also to Mr. Antonio Masini for his technical assistance.

References

Heinrich, G., Pfeifhofer, H. W., Stabentheiner, E. & Sawidis,
Glandular hairs of the ovary: a helpful character for Asteroideae taxonomy?

Lane, A. L. 1985: Features observed by electron microscopy as generic criteria. — *Taxon* 34: 38–43.

