A cytotaxonomic study of three endemic orchids of the Canary Islands

Sonia Bernardos¹,４, Mónica García-Barriuso¹, M. Catalina León-Arencibia², Alfredo Reyes-Betancort³, Ricardo González-González², Miguel Padrón² & Francisco Amich¹,４

¹) Department of Botany, Faculty of Biology, University of Salamanca, E-37008 Salamanca, Spain (e-mail: bernardos@usal.es)
²) Department of Plant Sciences, Faculty of Pharmacy, University of La Laguna, E-38271 La Laguna, Tenerife, Spain (e-mail: mcleona@ull.es)
³) Jardín de Aclimatación de La Orotava (ICIA), E-38400 Puerto de La Cruz, Tenerife, Spain (e-mail: areyes@icia.es)
⁴) Environment and Life Technological Studies Center (C.E.T.A.V.), Herbarium/Botanic Garden, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Received 23 Aug. 2005, revised version received 4 Oct. 2005, accepted 20 Oct. 2005

This paper reports somatic chromosome numbers for three orchid taxa endemic to the Canary Islands (Habenaria tridactylites, Himantoglossum metlesicsianum and Orchis canariensis), about whose cytogenetics very little is known. Chromosome numbers for the western Mediterranean and Atlantic monotypic genus Gennaria are also reported. The chromosome number of Himantoglossum metlesicsianum (2n = 36) is reported for the first time. New chromosome numbers were found for Habenaria tridactylites (2n = 34) and Orchis canariensis (2n = 84), confirming the tetraploidy of the latter. Chromosome numbers are reported also for Gennaria diphylla from North Africa (Tunisia) and the Iberian Peninsula (Portugal) (2n = 34 in both). Some taxonomic and phylogenetic comments are made on these species.

Key words: chromosome numbers, cytology, endemic orchids, Gennaria diphylla, Habenaria tridactylites, Himantoglossum metlesicsianum, Orchis canariensis, phyletic relationships

Introduction

Chromosome counts provide indispensable information on genetic discontinuities within and among species, and they contribute to our understanding of phylogenetic relationships at all taxonomic levels (e.g. Semple et al. 1989). The family Orchidaceae shows a high diversity of chromosome numbers (e.g. Jones 1974, Tanaka & Kamemoto 1984, Brandham 1999). Few authors have specifically attempted a karyological study of the Orchidaceae in the Canary Islands or of the endemic orchid species (e.g. Hautzinger 1978, Dalgaard 1991). Thus, the available karyological
data are scattered. The importance of karyological data to support the interpretation and discussion of these studies has been widely acknowledged (Pridgeon et al. 1997, Bateman et al. 2003). Thus, the main aim of this work is to provide karyological information of three endemic orchids from the Canary Islands, viz. *Habenaria tridactylites*, *Himantoglossum metlesicsianum* and *Orchis canariensis*, and the western Mediterranean and Atlantic monotypic genus *Gennaria* (*G. diphylla*), in order to achieve a better understanding of these taxa. The results are discussed with respect to the phylogeny of the groups.

Material and methods

We examined four species of orchids: three from the Canary Islands and one from Tunisia and Portugal. Karyological observations were based on the material collected between 2002 and 2004 from natural populations in various localities. A representative voucher specimen from each population was collected and deposited at SALA. On occasion, and when populations were very small, no material was collected; rather, photographic proof of existence was deposited in the Photographic Library of the Department of Botany, University of Salamanca.

Chromosome counts were usually made using ovaries sampled at a very early stage of development. Young flower buds were fixed in absolute ethanol–glacial acetic acid (3:1), sometimes modified to 6:1. Fixed material was stored at 4 °C until staining with 2% acetic orcein. Mounting involved squashing in 45% acetic acid. The karyological techniques used in this study were described in detail in Bernardos et al. (2003).

At least three metaphases were drawn for each population (including 3–5 individuals) using a Kaiser camera lucida (Kaiser, Germany). A Nikon Eclipse 50i microscope connected to a Nikon Coolpix 5400 digital camera was used to take the microphotographs. Drawings and microphotographs were deposited in the Department of Botany of the University of Salamanca.

Concerning nomenclature and delimitation of taxa, we follow Delforge (2005).

Results and discussion

The main results are given in Table 1, in which the chromosome numbers of the six studied populations are shown. There the species appear in alphabetical order, together with the diploid number, locality, collectors, herbarium and number of voucher.

Of the four studied species, the chromosome number of *Himantoglossum metlesicsianum* is here reported for the first time (*2n = 36*), new chromosome numbers were found for *Habenaria tridactylites* (*2n = 34*) and *Orchis canariensis*.

Table 1. Material studied and chromosome numbers found.

<table>
<thead>
<tr>
<th>Species/Sample</th>
<th>2n</th>
<th>Localities, collectors</th>
<th>Voucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gennaria diphylla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDI 03/02</td>
<td>34</td>
<td>Tunisia, SW El Haouaria, 50 m, Bernardos et al. s.n., 4 Mar. 2002</td>
<td>SALA 109012</td>
</tr>
<tr>
<td>GDI 11/03</td>
<td>34</td>
<td>Portugal, Estremadura, Serra da Arrábida, 130 m, Amich & Bernardos s.n., 29 Feb. 2003</td>
<td>SLIDE 9765</td>
</tr>
<tr>
<td>Habenaria tridactylites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTR 12/04</td>
<td>34</td>
<td>Canary Islands, Tenerife, El Bailadero, 325 m, Bernardos et al. s.n., 28 Jan. 2004</td>
<td>SALA 108468</td>
</tr>
<tr>
<td>HTR 15/04</td>
<td>34</td>
<td>Canary Islands, Tenerife, Valle de Masca, 685 m, Bernardos et al. s.n., 30 Jan. 2004</td>
<td>SLIDE 10122</td>
</tr>
<tr>
<td>Himantoglossum metlesicsianum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HME 27/04</td>
<td>36</td>
<td>Canary Islands, Tenerife, Chío, 1035 m, Bernardos et al. s.n., 30 Jan. 2004</td>
<td>SALA 108466</td>
</tr>
<tr>
<td>Orchis canariensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCA 21/04</td>
<td>84</td>
<td>Canary Islands, Tenerife, La Orotava, 1210 m, Bernardos et al. s.n., 29 Jan. 2004</td>
<td>SALA 108465</td>
</tr>
</tbody>
</table>
Habenaria tridactylites Lindley

Though hardly any karyological data is available on 115 species of the 600 or so that form the genus Habenaria, it would appear to show great karyological diversity. Chromosome numbers ranging from 2n = 28 to 2n = 168 have been reported (Pridgeon et al. 2001, Felix & Guerra 2005). In the literature, the most common somatic number for the genus is 2n = 42 (for example see Fedorov 1974, Felix & Guerra 2005), with n = 21 in approximately 69% of the species analysed and n = 14 in another 3.5% (Felix & Guerra 2005). Brandham (1999) indicates that several basic chromosome numbers exist in this complex genus.

For H. tridactylites, only the number 2n = 42 is known (Dalgaard 1991). In an earlier paper in which n = 21 (Mehra & Vij 1970) was reported, the experimental material was actually another species from the eastern Himalayas. In the present work we observed the number 2n = 34 (Fig. 1A–B). This does not conform with that reported by Dalgaard (1991) nor with the predominant somatic number of representatives of the genus from the Americas and Asia, 2n = 42 (Yokota 1990, Felix & Guerra 1998).

Gennaria diphylla (Link) Parl.

Several somatic chromosome numbers have been reported for Gennaria, including 2n = 34 (Dolcher & Dolcher 1961, Scrugli 1978), 2n = 36 (Dalgaard 1991) and 2n = 40 (Sundermann & von der Bank 1977). In the present work, the number 2n = 34 was obtained in material from Tunisia (sample GDI 03/02, Fig. 1C) and Portugal (sample GDI 11/03, Fig. 1D).

Thus, in Gennaria diphylla and Habenaria tridactylites, the only two representatives of the subtribe Habenariinae in the Mediterranean Basin and Macaronesian Islands, descending ploidy must have occurred (x = 17) with respect to the palaeopolyploid basic number of chromosomes in the family Orchidaceae, x = 21 (Greilhuber & Ehrendorfer 1975). The number x = 21 is also the commonest in the subtribe Habenariinae (Felix & Guerra 2005).

Orchis canariensis Lindley

In this group (sensu Delforge 2005), the somatic chromosome number of 2n = 42 has been commonly reported, as for several species of the Iberian Peninsula (O. langei, O. mascula, O. olbiensis, O. tenera; Løve & Kjellqvist 1973, Silvestre 1987, Bernardos et al. 2004) and other parts of Europe and the Mediterranean Basin (Del Prete 1978, Averyanov et al. 1985, Balayer 1986). However, tetraploids are also known, with 2n = 84 for O. patens (Pridgeon et al. 2001) and O. olbiensis (Bernardos et al. 2002). The tetraploidy of the latter would seem to support its independence from O. mascula at the species level (see Bateman et al. 2003), despite some deviating views (see Aedo 2005).

Hautzinger (1978) reported 2n = 80 for Orchis canariensis although Pridgeon et al. (2001) indicated that the number should presumably be 2n = 84. The present work confirms a somatic chromosome number of 2n = 84 (sample OCA 21/04, Fig. 1E). This supports a close relationship with the tetraploid O. patens, originally shown at the level of ITS sequences (Aceto et al. 1999, Bateman et al. 2003). These data suggest that O. canariensis arose through fragmentation of an ancient species whose distribution stretched from the central Mediterranean Basin (Italy) to the Canary Islands and Maghreb. It has, however, long been isolated in the western confines of its range. Its sister species, O. patens, is currently found in Liguria and the Tellian Atlas of Tunisia and Algeria, while the third tetraploid of the group, O. olbiensis, is found only in the western Mediterranean (Aedo 2005). Orchis spitzelii and O. cazorlensis, both diploid taxa with 2n = 40 and 2n = 42 respectively (Delforge 2005), are closely related to this group of polyploid taxa.

Himantoglossum metlesicsianum (Teschner) P. Delforge

Himantoglossum has recently been carefully examined and shown to have 36 chromosomes (Mazzola et al. 1982, Cauvet-Marc & Balayer 1986, Bianco et al. 1987, Capineri & Rossi 1987,
Aneuploids with 38 chromosomes are also known (Bernardos et al. 2004), and on occasion an additional B chromosome has been reported (Capineri & Rossi 1987, D’Emerico et al. 1992). The chromosome number of \(2n = 30 \) for *H. comperianum* (Ströhlein & Sundermann 1972) appears to be an error (Delforge 1999). The frequent count of \(2n = 36 \) for this genus suggests the existence of a basic number \(x = 6 \), giving records of \(4x = 24, 6x = 36 \).

No prior karyological data was available on *H. metlesicsianum*. This work is the first to report a somatic chromosome number of \(2n = 36 \) (sample HME 27/04, Fig. 1F). Thus, it has the same chromosome complement as the rest of the Mediterranean members of the genus. The strong genetic divergence of this Canary Island endemism (Bateman et al. 2003) with respect to *H. robertianum*, is not clearly reflected at the morphological level, nor in the number of somatic chromosomes.
Acknowledgements

We thank Dr. A. García Gallo for his company and assistance in the field in Tenerife. The authors are especially thankful for the thoughtful comments of anonymous reviewers.

References

Scrugli, A. 1978: Numeri cromosomici per la Flora Italiana,